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The joint distribution of low, high and closing prices of the arithmetic
Brownian motion is used to evaluate the properties of the most
popular estimators of the variance constructed on the basis of high,
low and closing prices. The expected values and mean square errors
of the Parkinson, Garman–Klass and Rogers–Satchell estimators for
the process with a zero drift and a non-zero drift are derived.
Moreover, new volatility estimators, more efficient in the majority of
financial applications than the Rogers–Satchell estimator, are
proposed. The considered estimators are applied to the estimation
of the volatility of the Polish stock index WIG20.
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1 I Q1ntroduction

Volatility plays a key role in many financial applications like portfolio analysis,
valuation of assets or risk management. The issue of variance estimation has been a
subject of plenty of studies, and many estimators of variance have been proposed in
the literature. In numerous analyses, daily returns of financial assets constructed on
basis of closing prices are used to estimate variance. However, ANDERSEN and
BOLLERSLEV (1998) have shown that although the daily squared return is an unbiased
estimator of variance, it is also generally very noisy, which makes it an inefficient
estimator. For this reason, more effective estimators of variance based on the use of
additional information about prices during the day have been applied. One such
approach is the application of information about low and high prices during the day.
Among the best- Q2known volatility measures constructed on the basis of open, low,

high and closing prices estimators of PARKINSON (1980), those of GARMAN and
KLASS (1980), ROGERS and SATCHELL (1991) and YANG and ZHANG (2000) can
be included. Such estimators, sometimes called price range estimators, are commonly
used to estimate volatility by practitioners of a financial market, because they are
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more than two to even more than seven times more efficient than the estimator calcu-
lated as the daily squared return of closing prices. Over the last few years, a renewed
interest in these estimators has been observed also within the scientific community.
The usage of low and high prices belongs to the area in which extensive both theoret-
ical and empirical research is now conducted. An overview of such studies can be
found in the paper of Chou, CHOU and LIU (2009).
Application of range estimators is an alternative for the usage of data with higher

than a daily frequency, so-called intraday data or high frequency data (see, e.g. the
papers of MCALEER and MEDEIROS (2008), PATTON (2011), VISSER (2011),
HAUTSCH (2012) and PIGORSCH, PIGORSCH and POPOV (2012)). The usage of data
with low and high daily prices has many advantages in comparison to intraday data
such as the wider availability, the lower acquisition costs, considerably lower
databases requirements and a greater robustness to microstructure effects. Further-
more, direct application of intraday data means some problems such as the existence
of daily cyclical fluctuations, the existence of strong autocorrelation or a significant
impact of the publication of macroeconomic information on quotations. Moreover,
the accuracy of the simplest and the least efficient range estimator, namely Parkinson,
is similar to the accuracy of realized volatility estimator constructed using four, five or
six observations during 1 day (PARKINSON, 1980, ANDERSEN, BOLLERSLEV, 1998).
In light of the a Q3forementioned observation, it is worth conducting studies on
estimators of variance constructed on the basis of high, low and closing prices; in
particular, it is worth examining the properties of such estimators for different model
assumptions and searching for new more efficient estimators.
The main contributions of the paper are as follows: (i) to estimate the bias and

analytically assess effectiveness of various, popular estimators of variance formulated
on the basis of low, high and closing prices for the process with a non-zero drift.
Those properties were determined for the process with a zero drift so far; (ii) to
propose new estimators of variance which are more efficient in the vast majority of
financial applications than commonly used the Rogers–Satchell estimator; (iii) to
analytically assess properties of popular and proposed range estimators based on
the same mathematical tool. According to our knowledge, it is the first attempt to
use the joint density of the random vector of low, high and closing values of the
arithmetic Brownian motion with drift to this goal.
The considered estimators are applied in this paper to data from the capital market.

We have shown that volatility estimates based on low, high and closing prices are
more accurate than the ones formulated on the basis of the GAR Q4CH models. CHOU

(2005) Q5and LI and HONG (2011), in turn, have demonstrated that range-based
volatility models that are formulated on the basis of such data give more accurate
forecasts of volatility than the ones based on the GARCH model.
The plan for the rest of the paper is as follows. In section 2, the joint density of the

random vector of low, high and closing values of the arithmetic Brownian motion and
its characteristic function are presented. Raw moments of random variables low, high
and closing values of the arithmetic Brownian motion with both a zero drift and a
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non-zero drift were also calculated. Section 3 describes the well-known estimators of
the variance based on the high, low and closing prices. The analytical evaluation of
their efficiency is performed, and also the values of the bias are derived for situations
when assumptions under which the estimators were constructed are not met.
Afterwards, new variance estimators are proposed. Finally, the considered estimators
are applied to the estimation of the volatility of the Polish stock indexWIG20. It is worth
noting the relatively small number of studies on Polish financial time series in comparison
with other emerging or developed markets. Summary is given in section 4. This paper is
the extension of the results presented by PERCZAK and FISZEDER (2013).

2 The three-dimensional random vector of low, high and closing values of the
arithmetic Brownian motion

2.1 Symbols and assumptions

It is assumed that t is a fixed positive real number, the time unit t is 1 day (i.e. t=1
stands for 1 day equivalent to 24 h), the variable τ satisfies the condition 0≤ τ≤ t,
τ =0 means the moment of the commencement of trading in the current period, Bτ

is the Wiener process and Sτ is the price of a financial instrument at time τ. A
return defined as xt= ln(St/S0) is the realization of the arithmetic Brownian motion
Xτ=μτ +σBτ at the point τ = t. Furthermore, it is assumed that At≔min

0≤τ≤t
Xτ and

Ct≔max
0≤τ≤t

Xτ.

Usually, it is assumed that the considered period t is equal to 24 h. The issue of
determining the low and high daily returns is more complex in practice (it is presented
in Figure F11).
Only four values of quotations during the day are usually commonly available:

today's open price (O1), observed today's low price (L1), observed today's high price
(H1) and today's closing price (S1). The application of information about prices
observed only from the commencement to the closure of market quotations does
not allow for the proper calculation of the volatility during the whole day. In this
case, one can estimate at most the volatility that takes place during the functioning
of the market. Values of L1 and H1 are determined for the period when the market
is open, but not for the whole day, as shown in Figure 1. Therefore, it is necessary
to redefine low and high daily returns so as to cover the period between the two
subsequent closures of quotations (i.e. 24 h). Finally, the following definitions of daily
low and high returns will be adopted At≔min ( lnL1 , lnS0 ) lnS0, Ct≔max ( lnH1, ln
S0 ) – lnS0, respectively, which will be used further in the paper. The variable Xτ ≔ ln
(St /S0 ) will be defined as the closing return. Terms of low, high and closing returns
used in the paper result from the modification of definitions for financial applications;
namely, rates of returns are used, and non-trading periods are taken into account.
Moreover, the constancy of the variance of the process is assumed during the day,
while the variability is permitted on consecutive days. For this reason, the following
condition has been established: 0< t≤ 1.
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2.2 The joint probability density function of random variables low, high and closing
returns of the arithmetic Brownian motion

In this section, we describe the density and characteristic functions, which are used
later in subsequent parts of the paper to evaluate the properties of well-known and
also new proposed estimators of variance.
The knowledge of the joint density of the vector of three random variables

(At,Ct,Xt ) allows us to determine the expected values of selected functions of such
variables. The form of this density is relatively complex; that is why, joint densities
of random vectors (Ct,Xt ) and (At,Xt ) will be presented firstly. There are many
studies in which the issue of the joint density of the random vector (Ct,Xt ) is
considered (see, e.g. COX and MILLER (1965) and HARRISSON (1985)). This problem
is also very often discussed in the valuation of barrier options (see, e. g. LI (1998) and
JAKUBOWSKI et al. (2006)).
Let us consider the random event {Ct≤ c,Xt≤ x} for x≤ c and 0≤ c. The cumulative

distribution function of the joint density of the random vector (Ct,Xt ) is described by
the following formula (see HARRISSON (1985), p. 13, Equation 8):

P Ct ≤ c;Xt ≤ x;μ;σ2; t
� � ¼ Φ

x� μt
σ
ffiffi
t

p
� �

� e
2μc
σ2Φ

x� 2c� μt
σ
ffiffi
t

p
� �

; (1)

where Φ stands for the cumulative standard normal distribution function.

Trading closed Trading open 

Price S(t)

Time tS0

O1
L1

S1

1

H1

Yesterday's
close

Today's
open

Today's
close

Fig. 1. Example of the price realization of a financial instrument during the day. Source: Own elaboration
based on the work of 1980 GARMAN and KLASS (1980, p.70).
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Based on Equation 1, the following expression for the joint density of the random
vector (Ct,Xt ) was derived:

f Ct ;Xt
c; x;μ;σ2; t
� � ¼ ∂2P Ct ≤ c;Xt ≤ x;μ;σ2; tð Þ

∂c∂x
¼

ffiffiffi
2

p
2c� xð Þe� x�2c�μtð Þ2�4μct

2σ2 tffiffiffi
π

p
σ3t

3
2

: (2)

The characteristic function of the joint density of the random vector (Ct,Xt )

φCt ;Xt
q; s; μ;σ2; t
� � ¼ ∫

∞

0
∫
c

�∞
eiqcþisxf Ct ;Xt

c; x;μ;σ2; t
� �

dxdc (3)

is described in detail in Appendix A.
Let us analyse another random event {At> a,Xt> x} for a≤ 0 and a≤ x. By

analogy with the previously considered event, one can formulate the probability

P At > a;Xt > x;μ;σ2; t
� � ¼ Φ

�xþ μt
σ
ffiffi
t

p
� �

� e
2μa
σ2Φ

�xþ 2aþ μt
σ
ffiffi
t

p
� �

: (4)

The density and its characteristic function were also derived in this case. The joint
density of the random vector (At,Xt) is given by the formula:

f At ;Xt
a; x;μ;σ2; t
� � ¼ ∂2P At > a;Xt > x;μ;σ2; tð Þ

∂a∂x
¼

ffiffiffi
2

p
x� 2að Þe�

x�2a�μtð Þ2�4μat
2σ2 tffiffiffi

π
p

σ3t
3
2

: (5)

The characteristic function of the joint density of the random vector (At,Xt)

φAt ;Xt
p; s;μ;σ2; t
� � ¼ ∫

0

�∞
∫
∞

a
eipaþisxf At ;Xt

a; x;μ;σ2; t
� �

dxda (6)

is also given in detail in Appendix A.
The issue of finding the density of the random vector (At,Ct,Xt) was considered, for

instance, in the papers of COX and MILLER (1965) and LI (1999) Q6. The density of Xt

with upper and lower absorbing barriers equal to c and a, respectively, is given by
the following formula (see COX and MILLER (1965) Q7, p. 222, Equation 78):

f Xt
x;At > a;Ct≤c;μ;σ2; t
� � ¼ 1ffiffiffiffiffiffiffi

2πt
p

σ
∑
∞

k¼�∞
e
2k c� að Þμ

σ2 e
� x�2k c�að Þ�μtð Þ2

2σ2 t � e
2cμt � x� 2c� 2k c� að Þ � μtð Þ2

2σ2t

� �
;

(7)
where a≤ 0≤ c, a≤ x≤ c.
Using the expression (7), the joint density of random vector (At,Ct,Xt) was derived:

f At ;Ct ;Xt
a; c; x;μ;σ2; t
� � ¼ � ∂2f Xt

x;Ct≤c;At > a;μ;σ2; tð Þ
∂a∂c

¼ 1ffiffiffiffiffi
2π

p
σ5t5=2

∑
∞

k¼�∞
ðgða; c; x; k; k;μ;σ; tÞ

�g a; c; x; k; k þ 1;μ;σ; tÞÞ;ð

(8)
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where the function g is described as follows:

g a; c; x;m; n;μ;σ; tð Þ ¼ 4mn x� 2 nc� mað Þð Þ2 � σ2t
h i

e2 nc� mað Þμt � x� 2 nc� mað Þ � μtð Þ2
2σ2t

:

(9)

The characteristic function of the joint density of the random vector (At,Ct,Xt) is
given by the following formula:

φAt ;Ct ;Xt
p; q; s;μ;σ2; t
� � ¼ ∫

0

�∞
∫
∞

0
∫
c

a
eipaþiqcþisxf At ;Ct ;Xt

a; c; x;μ;σ2; t
� �

dxdcda:

(10)
The calculation of the aforementioned integral is presented in Appendix A.
The form of the characteristic functions allows for the calculation of the expected

values of selected random variables. For instance, for integers u, v,w, we obtain

E At
uCt

vXt
w½ � ¼ 1

in
∂nφAt ;Ct ;Xt

p; q; s;μ;σ2; tð Þ
∂pu∂qv∂sw

; (11)

where n ¼ uþ vþ w.
When u=0 or v=0, it is convenient to apply the following formulae:

E Ct
vXt

w½ � ¼ 1
in
∂nφ Ct ;Xt

q; s; μ;σ2; tð Þ
∂qv∂sw

; (12)

E At
uXt

w½ � ¼ 1
in
∂nφ At ;Xt

p; s; μ;σ2; tð Þ
∂pu∂sw

; (13)

respectively.
General expressions for the expected values of products of any powers of variables

(At,Ct,Xt) given in Equations 11–13 are applied to derive all first, second and fourth
raw moments of the considered variables (details are presented in Appendices B
and C, respectively, for the processes with a non-zero drift and with a zero drift).

3 Volatility estimators with the usage of low, high and closing prices

3.1 Review of variance estimators based on high, low and closing prices

The derived expressions for raw moments are applied in this section to discuss the
properties of well-known estimators of variance of the arithmetic Brownian motion.
According to our knowledge, there is no study in which a comprehensive comparison
of variance estimators based on the same mathematical tool would have been
analytically performed. In section 3.1, biases of selected popular estimators of the
variance for a non-zero drift are formulated; furthermore, variances of those
estimators are analytically derived. Such characteristics have not been published yet.
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The most popular, unbiased estimator of the variance of the process is constructed
based on only closing prices, but the value of the drift is required. It can be presented
by the following formula:

s2
̂

0 tð Þ ¼ Xt � μtð Þ2 (14)

and its variance is equal to

Var s2
̂

0 tð Þ
h i

¼ E Xt � μtð Þ2 � σ2t
� �2	 


¼ E Xt � μtð Þ4 � σ4t2
h i

¼ 2σ4t2

(15)
The high variance of this estimator obviously results from the only fragmentary

usage of the data set At,Ct,Xt.
The intermediate results for the derivation of formulae for the expected value,

variance and the mean square error (MSE) of estimators presented in this section
are given in Appendix D.
The Parkinson (1980) estimator can be described by the following formula:

s2
̂

1 tð Þ ¼ Ct � Atð Þ2
4 ln2

: (16)

Note that the values of Xt are not used in the valuation. Moreover, it is an unbiased
estimator of the variance of the arithmetic Brownian motion only if μ=0. It follows
from Equations C3 and C4 in Appendix C. In practice, the estimator is often applied
when the value of the drift is unknown or when it is different from zero. A formula for
the expected value of the Parkinson estimator for the process with a non-zero drift
was derived:

E s2
̂

1 tð Þ
h i

¼ 1þ 1
4 ln2

∑
∞

m¼1

υ2m∑
m

j¼1

�1ð Þmþj 22jþ1 � 1
� �

ζ 2jþ 1ð Þ
2mþ2j�1m mþ 1ð Þ m� jð Þ! j� 1ð Þ!

 !
σ2t

¼ 1þ 7ζ 3ð Þ
32 ln2

υ2 þ � 7ζ 3ð Þ
192 ln2

þ 31ζ 5ð Þ
768 ln2

� �
υ4

	

þ 7ζ 3ð Þ
1536 ln2

� 31ζ 5ð Þ
3072 ln2

þ 127ζ 7ð Þ
24576 ln2

� �
υ6

þ � 7ζ 3ð Þ
15360 ln2

þ 31ζ 5ð Þ
20480 ln2

� 127ζ 7ð Þ
81920 ln2

þ 511ζ 9ð Þ
983040 ln2

� �
υ8 þ⋯�σ2t;

(17)

where υ :¼ μ
ffiffi
t

p
σ , and ζ nð Þ :¼∑∞

k¼1
1
kn is the so-called Riemann Zeta function defined for

n∈Z; n > 1.
Figure F22 gives an overview on the size of the bias of the estimator depending on the

value of the v parameter.
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Because the Parkinson estimator is biased forμ≠0, it is better to present the MSE of
this estimator, instead of its variance. It can be expressed as follows:

MSE s2
̂

1 tð Þ
h i

¼ �1þ 9ζ 3ð Þ
16 ln22

þ � 3ζ 3ð Þ
32 ln22

� 7ζ 3ð Þ
16 ln2

þ 93ζ 5ð Þ
128 ln22

� �
υ2

	

þ 3ζ 3ð Þ
256 ln22

þ 7ζ 3ð Þ
96 ln2

� 93ζ 5ð Þ
512 ln22

� 31ζ 5ð Þ
384 ln2

þ 1905ζ 7ð Þ
8192 ln22

� �
υ4

þ � 3ζ 3ð Þ
2560 ln22

� 7ζ 3ð Þ
768 ln2

þ 279ζ 5ð Þ
10240 ln22

þ 31ζ 5ð Þ
1536 ln2

� 1143ζ 7ð Þ
16384 ln22

�

� 127ζ 7ð Þ
12288 ln2

þ 3577ζ 9ð Þ
81920 ln22

�
υ6 þ⋯



σ4t2:ð18Þ

The efficiency of the estimator can be assessed for the different values of υj j on the
basis of Figure F33.
For μ=0, the MSE of the Parkinson estimator is equal to its variance and can be

described as follows:

Var s2
̂

1 tð Þ
h i

¼ �1þ 9ζ 3ð Þ
16 ln22

� �
σ4t2≈0:407332σ4t2: (19)

This result does not differ from the outcome of Parkinson (1980, p. 63), but it
diverges from the estimate of Garman and Klass (1980), p. 71), according to which

the estimator s2 ̂1 tð Þ is 5.2 times more effective than s2
̂

0 (t). In none of the discussed
papers, exact formulae for the derivation of those values have been given.

0.995

0.996

0.997

0.998

0.999

1.000

1.001

1.002

1.003

1.004

1.005

0.00 0.20 0.40 0.60 0.80 1.00
|v|

Parkinson

Garman-Klass

Fig. 2. The bias of the Parkinson, Garman–Klass, s2 ̂2 tð Þ and s2
̂

3 tð Þ estimators for a non-zero drift. The
quotient of the estimator's expected value and the variance of the arithmetic Brownian motion

as a function of υj j Q12.

(18)
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GARMAN and KLASS (1980) considered also only the case when μ=0. They
constructed the estimator of the variance of the arithmetic Brownian motion given
by the expression (hereinafter referred to as the G-K estimator):

s2
̂

2 tð Þ ¼ Ct � Atð Þ2
2

� 2 ln2� 1ð ÞXt
2: (20)

Under the adopted assumptions, its unbiasedness can be proved by applying
Equations C3 and C4 in Appendix C. The expected value of the G-K estimator for
υ≠ 0 (μ≠ 0) can be constructed based on the following equation:

E s2
̂

2 tð Þ
h i

¼ 1þ 1� 2 ln2ð Þυ2� þ∑
∞

n¼1

υ2n∑
n

j¼1

�1ð Þnþj 22jþ1 � 1
� �

ζ 2jþ 1ð Þ
2nþ2jn nþ 1ð Þ n� jð Þ! j� 1ð Þ!

#
σ2t

¼ 1þ 1� 2 ln2þ 7
16

ζ 3ð Þ
� �

υ2 þ � 7
96

ζ 3ð Þ þ 31
384

ζ 5ð Þ
� �

υ4
	

þ 7ζ 3ð Þ
768

� 31ζ 5ð Þ
1536

þ 127ζ 7ð Þ
12288

� �
υ6

þ � 7ζ 3ð Þ
7680

þ 31ζ 5ð Þ
10240

� 127ζ 7ð Þ
40960

þ 511ζ 9ð Þ
491520

� �
υ8 þ⋯



σ2t:

The size of the bias of the estimator depending on the value of the υ parameter can
be assessed on the basis of Figure 2.

0.26

0.28

0.30

0.32

0.34

0.36

0.38

0.40

0.42

0.44

0.46

0.48

0.50

0.00 0.20 0.40 0.60 0.80 1.00

|v|

Parkinson

Garman-Klass

Rogers-Satchell

Fig. 3. The efficiency of the analysed estimators. The quotient of the estimator's mean square error and
the variance of the arithmetic Brownian motion as a function of υj j.

(21)
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The MSE of the G-K estimator is equal to:

MSE s2
̂

2 tð Þ
h i

¼ E
Ct � Atð Þ2

2
� 2 ln2� 1ð ÞXt

2 � σ2t

 !2
2
4

3
5

¼ 2� 8 ln2þ 4 ln22þ 4� 7
2
ln2

� �
ζ 3ð Þ

	

þ 4 1� 2 ln2ð Þ2 þ 11ζ 3ð Þ
8

� 21ζ 3ð Þ ln2
4

þ 155ζ 5ð Þ
32

� 31ζ 5ð Þ ln2
8

� �
υ2

þ 1� 2 ln2ð Þ2 þ 29ζ 3ð Þ
96

� 7ζ 3ð Þ ln2
32

� 31ζ 5ð Þ
48

� 31ζ 5ð Þ ln2
64

�

þ 3175ζ 7ð Þ
2048

� 635ζ 7ð Þ ln2
512

�
υ4 þ⋯



σ4t2:

The efficiency of the estimator can be assessed for the different values of |υ| on the
basis of Figure 3. For μ=0, the MSE of the G-K estimator is equal to the variance
and can be presented as follows:

Var s2
̂

2 tð Þ
h i

¼ 2� 8 ln2þ 4 ln22þ 4� 7
2
ln2

� �
ζ 3ð Þ

� �
σ4t2≈0:268654σ4t 2:

(23)

The obtained result is in line with the estimate of GARMAN and KLASS (1980, p. 74),

according to which the estimator s2 ̂2 tð Þ is 7.4 times more effective than s2
̂

0 tð Þ, and with
the outcome of ROGERS and SATCHEL (1991, p. 505), according to which the variance

of the estimator s2 ̂2 tð Þ is equal to 0.27σ4t2.
ROGERS and SATCHELL (1991) conducted research for the process with a non-zero

drift. They proposed the following variance estimator of Xt (further referred to as the
R-S estimator):

s2
̂

3 tð Þ ¼ Ct Ct � Xtð Þ þ At At � Xtð Þ; (24)

which is unbiased for all values of μ≠ 0 (it follows from equations (B16, B17, B19,
B20) in Appendix B), and the value of this parameter is not necessary for variance
estimation. The variance of this estimator can be expressed as follows:

(22)
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Var s2
̂

3 tð Þ
h i

¼ E Ct Ct � Xtð Þ þ At At � Xtð Þ � σ2t
� �2h i

¼ 1� 4 ln2þ 7ζ 3ð Þ
4

þ � 4 ln2
3

� 7ζ 3ð Þ
8

þ 31ζ 5ð Þ
16

� �
υ2

	

þ � 7ζ 3ð Þ
192

� 217ζ 5ð Þ
384

þ 635ζ 7ð Þ
1024

� �
υ4

þ 7ζ 3ð Þ
1920

þ 93ζ 5ð Þ
1280

� 5969ζ 7ð Þ
30720

þ 3577ζ 9ð Þ
30720

� �
υ6

þ � 7ζ 3ð Þ
23040

� 341ζ 5ð Þ
46080

þ 2921ζ 7ð Þ
92160

� 9709ζ 9ð Þ
245760

þ 2047ζ 11ð Þ
131072

� �
υ8 þ⋯�σ4t2:

The efficiency of the estimator can be evaluated for different values of |υ| on the
basis of Figure 3. For μ=0, the variance of the estimator is equal to

Var s2
̂

3 tð Þ
h i

¼ 1� 4 ln2þ 7
4
ζ 3ð Þ

� �
σ4t 2≈0:331011σ4t 2: (26)

The value of Var s2
̂

3 tð Þ
h i

is in line with the results of ROGERS and SATCHELL (1991,

p. 505). Also in this case, expressions for the derivation of this value were not given.
The estimators constructed on the basis of only the single vector of random

variables (At,Ct,Xt) are considered in this paper. However, in financial studies, a
number of other volatility estimators, which are built on the basis of a wider set of
information, are also used. One of them is the estimator proposed by KUNITOMO

(1992), which is significantly more effective than the earlier-mentioned estimators.
The so-called corrected low and high values are used in the construction of this
estimator; however, the quotations of intraday returns are necessary. Therefore, the
estimator was not considered in this paper.
As it has been already mentioned, the presented estimators are the most often

applied for the calculation of the variance for 1 day of quotations. Their properties
are derived with the assumption that the log returns are realizations of the arithmetic
Brownian motion with given values of the drift μ and the variance σ2. Sometimes,
however, the estimators are used to calculate the variance for the period longer than
1 day. Then, it is assumed that the variance of returns is constant in the considered
period and its estimate for 1 day is the arithmetic mean of daily variances calculated
for consecutive days belonging to the adopted period. In such a case, a significant
strengthening of assumptions of the adopted model takes place. It should be noted,
however, that such strengthened assumption is not valid in the light of the results of
empirical studies for most financial series (see, e.g. the papers of CORSI, MITTNIK,
PIGORSCH and PIGORSCH (2008) and TERÄSVIRTA (2009)). For this reason, this
method of use of the presented estimators is not of interest in this study.
The constancy of the variance for the period longer than 1 day is also assumed in

the formulation of the estimator proposed by YANG and ZHANG (2000). It is

(25)
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constructed on the basis of the sequence of random vectors (At,Ct,Xt). Additionally
the so-called night returns, that is, returns between the closing price the day before
and the next day's opening price, are taken (Figure 1). In view of a high efficiency
and the common availability of data, which are used in its construction, it is one of
the most commonly used volatility estimators based on open, high, low and closing
prices. However, it is not possible to use this estimator to calculate the variance for
only 1 day. For this reason and because of the very strong assumptions, the estimator
has also not been widely discussed in the paper.

3.2 Modifications of the existing volatility estimators based on the low and high prices

The variance estimators considered so far are constructed for different assumptions.

The estimator s2
̂

0 tð Þ based on the closing prices requires the value of the drift μ,

and the PARKINSON estimator s2 ̂1 tð Þ and the G-K estimator s2 ̂2 tð Þ were constructed
for the assumption that the value of the drift is not only known but is also equal to

zero. Only for the R-S estimator s2 ̂3 tð Þ, the information of the drift is not used. The
attempt to find more efficient variance estimators for different assumptions is
undertaken in this section of the paper.
Let us consider a very general formulation of the variance estimator:

s2
̂
a; b; c; d; u; tð Þa At

2 þ Ct
2

� �þ bAtCt þ cXt
2 þ d AtXt þ CtXtð Þ þ uμ2t2; (27)

where a; b; c; d; u∈R. Applying the formulae presented in Appendix B, one can show
that the expected value and the MSE of this estimator can always be written as the
sequences:

E s2
̂
a; b; c; d; u; tð Þ

	 

¼ r0 þ r1υ2 þ r2υ4 þ r3υ6 þ⋯
� �

σ2t; (28)

MSE s2
̂
a; b; c; d; u; tð Þ

	 

¼ s0 þ s1υ2 þ s2υ4 þ s3υ6 þ⋯
� �

σ4t2; (29)

where r0; r1; r2;⋯∈R; s0; s1; s2;⋯∈R.
Because the form of the minimum variance estimator depends on the value of the

estimated parameter, it is not possible to construct the most efficient estimator.
However, in practice, for daily financial time series, the value of the drift is relatively
low, that is, μtj j≪σ

ffiffi
t

p
⇒ υj j≪1 , and such assumption permits to formulate some

propositions. Let us assume at the beginning that the value of the drift μ is known.
Scenario 1
Find the parameters a, b, c, d, u which minimize s0 in the formula (29), subject to

r0 = 1, r1 = 0.
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The solution is (due to the complicated form, only decimal approximations are
given) a≈ 0.510995, b≈� 0.984239, c≈� 0.383321, d≈� 0.018875, and u≈
� 0.134291, and the value of s0 is approximately equal to 0.268581. This estimator
can be written as follows:

s201
̂
tð Þ≔ s2

̂
0:510995;�0:984239;�0:383321;�0:018875;�0:134291; tð Þ (30)

For μ=0 (i.e. υ=0), it is, to the accuracy of the applied approximation, an
unbiased estimator of the variance of the arithmetic Brownian motion. The MSE
(in this case also the variance) of this estimator is approximately equal to
0.268581σ4t2, and it is the lowest among all of the estimators described by the
expression (B11); in particular, it is lower than the variance of the PARKINSON and

G-K estimators. However, the estimator s201
̂
tð Þ is only slightly more effective than

the G-K estimator (see formula B3). Moreover, when the value of the drift is known

and μ≠ 0, then the estimator s201
̂
tð Þ is biased. Notwithstanding, the bias of the estimator

does not exceed 0.4% of the value of the variance of the arithmetic Brownian motion
(r1 = 0, r2≈� 0.003878 and r3≈ 0.000443 and the subsequent values of ri in the sequence
(28) are very low).

Because the increase of the efficiency of the estimator s201
̂
tð Þ in comparison to the

G-K estimator is very low, the latter estimator served as a basis for the construction of
a more parsimonious formulation. Assuming, in addition, that in scenario 1 a ¼ 1

2,
b=� 1, c=� (2 ln 2� 1)≈� 0.386294, d=0 and based on the equation (21), the fol-

lowing value of the parameter u was obtained u ¼ � 1� 2 ln2þ 7ζ 3ð Þ
16

� �
≈� 0:139606,

for which s0 ¼ 2� 8 ln2þ 4 ln22þ 4� 7
2 ln2

� �
ζ 3ð Þ≈0:268654 , r2≈� 0.003940 and

r3≈ 0.000450. This estimator can be expressed as follows:

s202
̂
tð Þ :¼ Ct � Atð Þ2

2
� 2 ln2� 1ð ÞXt

2 � 1� 2 ln2þ 7ζ 3ð Þ
16

� �
μ2t2: (31)

The bias of the estimator s202
̂
tð Þ of the variance of the arithmetic Brownian motion,

for the known value of the drift satisfying the condition μtj j≪σ
ffiffi
t

p
, is not significant in

practical applications. Whereas the MSE of the estimator is only slightly higher than

the MSE of the estimator s201
̂
tð Þ, and for μ ¼ 0, it is equal to 0.268654σ4t2

Scenario 2

Find the parameters a, b, c, d, u that minimize s0 in the formula (29), subject to
r0 = 1 and r1 = 0, for i>0.

In comparison to scenario 1, an explicit requirement of the unbiasedness of the

estimator s2 ̂ a; b; c; d; u; tð Þ is included now. The condition ri=0 for i> 0 means that
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b=0, and the value of the parameter u is responsible for the condition r1 = 0 The
solution is the following set of parameters: a ¼ �d ¼ 8

12�16 ln2þ7ζ 3ð Þ≈0:857997 and c=

u=1� a≈ 0.142003. This estimator can be formulated as follows:

s203
̂
tð Þ :¼ 8

12� 16 ln2þ 7ζ 3ð Þ Ct Ct � Xtð Þ þ At At � Xtð Þð Þ

þ 4� 16 ln2þ 7ζ 3ð Þ
12� 16 ln2þ 7ζ 3ð Þ Xt

2 � μ2t2
� �

:

(32)

It is an unbiased estimator of the variance of the arithmetic Brownian motion for
the known μ and for μ=0, its MSE is the lowest among all the unbiased estimators

described by the expression (27). For μ=0, the MSE of the estimator s203
̂
tð Þ is equal

to 2� 2a≈ 0.284006σ4t2

Let us assume now that the value of the drift μ is not known.
Scenario 3
Find the parameters a, b, c, d that minimize s0 in the formula (29), subject to u=0,

r0 = 1 and r1 = 0.
The solution is (due to the complicated form, only decimal approximations are

given) a≈ 0.590262, b≈�1.136916, c≈�0.597904 and d≈�0.021803, for which
s0≈ 0.310244. This estimator can be given as follows:

s204
̂
tð Þ :¼ s2

̂ 0:590262;�1:136916;�0:597904;�0:021803; 0; tð Þ: (33)

The estimator s204
̂
tð Þ is biased; however, its bias does not exceed 0.5% of the value

of the variance of the arithmetic Brownian motion (r1 = 0, r2≈� 0.004564 and
r3≈ 0.000522 and the subsequent values of ri in the sequence (28) are very low) and
is negligible from a practical point of view. More importantly, the estimator can be
used when the value of the drift is unknown. For μ=0, the MSE of the estimator

s204
̂
tð Þ is equal to 0.310244.

The additional restriction d=0 imposed in scenario 3 simplifies the form of the
estimator, without causing a significant increase in the value of s0. The obtained
estimator has the following formula:

s205
̂
tð Þ ¼ s2

̂ 0:582491;�1:158478;�0:612495; 0; 0; tð Þ: (34)

For these parameters, s0 is approximately equal to 0.310253, and the values of r2

and r3 are the same as for the estimator s204
̂
tð Þ. The MSE of the estimator is only

slightly higher than the MSE of the estimator s204
̂
tð Þ , and for μ=0, it is equal to

0.310253.
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Scenario 4
Find the parameters a, b, c, d that minimize s0 in the formula (29), subject to u=0,

r0 = 1 and r1 = 0 for i> 0 It failed to discover a more effective estimator than the R-S
one for the defined problem.

The size of bias of the proposed estimators s201
̂
tð Þ and s204 ̂ tð Þ depending on the value

of the parameter υ can be assessed on the basis of Figure 2. The biases of the

estimators s202
̂
tð Þ and s205

̂
tð Þ are almost the same as the ones of the estimators

s201
̂
tð Þ and s204

̂
tð Þ, respectively (the estimators would be indistinguishable in Figure 2;

that is why, they are omitted). Moreover the quotients of the estimator's MSE and the

square of the variance of the arithmetic Brownian motion for the estimators s201
̂
tð Þ,

s203
̂
tð Þ and s204

̂
tð Þ. are presented in Figure 3. The efficiency of the estimators s202

̂
tð Þ

and s205
̂
tð Þ is almost the same as the one of the estimators s201

̂
tð Þ and s204 ̂ tð Þ, respectively

(the estimators would be indistinguishable in Figure 3; that is why, they are omitted).

3.3 The estimation of the volatility of the Polish stock index

In order to illustrate the usefulness of the considered estimators, they are applied to
the estimation of the variance of the Polish stock index WIG20. The index is chosen
deliberately, due to the fact that it includes the 20 largest and most liquid companies
listed on the Warsaw Stock Exchange. This is important, because intraday data are
used in the study and the quality of such data depends to a large extent on the market
liquidity. It is worth noting the relatively small number of studies on Polish financial
time series in comparison with other emerging or developed markets.

The following estimators of variance are applied: s20
̂
tð Þ constructed on the basis of clos-

ing prices, Parkinson s201
̂
tð Þ, G-K s202

̂
tð Þ, R-S s203

̂
tð Þ and the ones proposed in the paper ,

s201
̂
tð Þ , s203 ̂ tð Þ and s204

̂
tð Þ. They are described by the expressions 14, 16, 20, 24, 30, 32 and

33, respectively. The analysis is performed for the 10-year period from 30 September 2002
to 28 September 2012, that is, for the period that covers both the bull and bear markets
and, what is important, the financial crises. A total of 2513 vectors of logarithmic returns
multiplied by 100: a1; c1; x1ð Þ, a2; c2; x2ð Þ,… , a2513; c2513; x2513ð Þ are calculated, and the

drift is estimated by the following formula: μ ̂ ¼ 1
2513∑

i¼2513

i¼1 xi≈0:0326135 . The
constancy of the drift in time is assumed. The simplest form of the estimator of the drift
is adopted. If a more effective estimator of the drift is applied, then one would expect that
estimates of the volatility based on the proposed estimators would not be less accurate
from those presented in the paper. The aforementioned seven estimators are evaluated
for each day in the sample, that is, for 1≤ i≤ 2513.
For comparison, estimates of variances are also calculated on the basis of

univariate GARCH model (BOLLERSLEV, 1986). Due to the presence of a negative
correlation between lagged returns and the conditional variance, the following
models are also applied: EGA Q8RCH model (NELSON, 1991), GJR (GLOSTEN,
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JAGANNATHAN, RUNKLE, 1993), TGARCH (RABEMANANJARA, ZAKOIAN, 1993)
and AGARCH (ENGLE, NG, 1993). Models with the Student-t conditional innova-
tion distribution are used to better describe the fat tails of the distribution of the
WIG20 returns. There was no statistically significant autocorrelation; that is why,
the following specification of the conditional mean is adopted: xi = γ0 + ϵi. Parameters
of these models are estimated using a maximum likelihood method.
As a measure of ex-post realized variance, for the evaluation of estimates accuracy, the

sum of squared intraday returns is applied. A significant problemwith the use of such data
is the choice of the appropriate frequency of observations (see, e.g. PIGORSCH et al.
(2012)). For that reason, the realized volatility was estimated in various variants by using
returns in 5, 10, 15, 20, 30 and 60min. The evaluation of estimates accuracy of the consid-
eredmethods was performed on the basis of the followingmeasures (a detailed description
of the methods can be found, e.g. in Q9POON and GRANGER (2003)): the mean error (ME),
the root mean squared error, the heteroskedasticity adjusted root mean squared error, the
L Q10INEX loss function (for a=�0.01 and a=0.01) and the coefficient of determination (R2)
for the regression of ex-post realized variances on estimates of variances.
The results of the performed study for the case when ex-post realized variances are

estimated as the sum of squared 10-min returns are presented in Table T11. The rankings
of the considered methods are very similar also when ex-post realized variances are
estimated on the basis of returns in 5, 15, 20, 30 and 60min.
The outcomes of the ME indicate that estimates of variances constructed on the

basis of low and high prices are significantly undervalued. However, it does not result
from the poor quality of those estimators but from the adopted measure of ex-post
realized variance; in this case, the sum of squared intraday returns (see, e.g.
BARNDORFF-NIELSEN and SHEPHARD (2004) and ANDERSEN, DOBREV and
SCHAUMBURG (2012)). Moreover, similarly as for daily data, the squared intraday
return is an inefficient estimator of variance of the intraday return.
The results of other measures presented in Table 1 indicate the visible superiority of

the variance estimators based on low and high prices over the estimators formulated
on the basis of the GARCHmodels. The asymmetric GARCHmodels perform better
than the simple GARCH model, but the advantage is small in comparison to the one
resulting from the application of low and high prices.
It seems that the relatively weak performance of the estimators R-S and s204

̂
tð Þ ,

which can be used when the value of the drift is unknown, may be due to the excessive
existence, in comparison to the arithmetic Brownian motion, of the phenomenon:
both Ct and At � Xt or both Ct;Xtð Þ and At are close to zero. As a consequence,
estimates of the variance based on the R-S estimator are lower than the ones based
on the G-K and particularly the Parkinson. This may be related to the unstable,
during consecutive days, drift or the existence of autocorrelation in intraday returns;
however, it needs further comprehensive studies.
All the measures presented in Table 1 (with the exception of the ME) favour the

estimator s203
̂
tð Þ. Obviously, the superiority of this estimator is not always meaningful,

and in many cases, it is probably not statistically significant.
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4 Conclusions

The joint probability density function of random variables low, high and closing
returns of the arithmetic Brownian motion is presented in the paper. The application
of this density allowed to analytically evaluate the main properties of the most
popular estimators of the variance constructed on the basis of low, high and closing
prices of the arithmetic Brownian motion. In particular, the unbiasedness of the
Parkinson and Garman–Klass estimators for the process with a zero drift and of
the Rogers–Satchell estimator for any drift is proved. Thus, the main results from
the papers of the mentioned authors are confirmed.
Moreover, the expected values of the Parkinson and Garman–Klass estimators for the

arithmetic Brownian motion with a non-zero drift are derived. The MSEs of the
Parkinson, Garman–Klass and Rogers–Satchell estimators for the process with a non-
zero drift are also formulated. According to our knowledge, those characteristics have
not been published yet.
Furthermore, new volatility estimators, more efficient in the majority of financial

applications than the Rogers–Satchell estimator, are proposed. The considered estimators
are applied to the estimation of the volatility of the Polish stock index WIG20. It is shown
that volatility estimates based on low, high and closing prices are more accurate than the
ones formulated on the basis of the GARCH models. The estimators based on low, high
and closing prices can be applied in the future to the construction of the GARCHmodels,
so that it will be possible to obtain even more accurate volatility estimates.
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Appendix A
Characteristic functions of the joint density of the random vectors of low, high and
closing returns of the arithmetic Brownian motion
Here, we describe in detail the characteristic functions, which are used in section 3 to evaluate
properties of well-known and also new proposed estimators of variance. The characteristic
function of the joint density of the random vector Ct;Xtð Þ is given by the following formula:

φCt ;Xt
q; s;μ;σ2; t
� � ¼ ∫

∞

0
∫
c

�∞
eiqcþisxf Ct ;Xt

c; x;μ;σ2; t
� �

dxdc

¼
qþ sð Þσ2 � iμð Þe1

2 qþsð Þ � qþsð Þσ2þ2iμð Þterfc �μ�i qþsð Þσ2ð Þ ffiffitpffiffi
2

p
σ

� �
qþ 2sð Þσ2 � 2iμ

þ
sσ2 � iμð Þe12s �sσ2þ2iμð Þterfc μþisσ2ð Þ ffiffitpffiffi

2
p

σ

� �
qþ 2sð Þσ2 � 2iμ

;

ðA1Þ

where erf xð Þ ¼ 2ffiffi
π

p ∫x0e�t2dt and erfc(x) = 1� erf(x).
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The characteristic function of the joint density of the random vector (At,Xt) is
described as follows:

φAt ;Xt
p; s;μ;σ2; t
� � ¼ ∫

0

�∞
∫
∞

a
eipaþisxf At ;Xt

a; x;μ;σ2; t
� �

dxda

¼
pþ sð Þσ2 � iμð Þe12 pþsð Þ � pþsð Þσ2þ2iμð Þterfc μþi pþsð Þσ2ð Þ ffiffitpffiffi

2
p

σ

� �
pþ 2sð Þσ2 � 2iμ

þ
sσ2 � iμð Þe12s �sσ2þ2iμð Þterfc �μ�isσ2ð Þ ffiffitpffiffi

2
p

σ

� �
pþ 2sð Þσ2 � 2iμ

:

ðA2Þ

The characteristic function of the joint density of the random vector At;Ct;Xtð Þ is
given by the following formula:

φAt ;Ct ;Xt
p; q; s; μ;σ2; t
� � ¼ ∫

0

�∞
∫
∞

0
∫
c

a
eipaþiqcþisxf At ;Ct ;Xt

a; c; x;μ;σ2; t
� �

dxdcda

¼ ∑
�2

k¼�∞
ðψ 2k; 2k; p; q; s;μ;σtð Þ

�ψ 2k þ 2; 2k; p; q; s;μ;σ; tð ÞÞ
þψ �2;�2; p; q; s;μ;σ; tð Þ

þ∑
∞

k¼1

ðψ 2k; 2k; p; q; s;μ;σ; tð Þ

�ψ 2k þ 2; 2k; p; q; s;μ;σ; tð ÞÞ;
ðA3Þ

where

ψ m; n; p; q; s;μ;σ; tð Þ ¼
mn pσ2 þ sσ2 � iμð Þ2 sgn m� 1ð Þ þ erf

ipσ2þisσ2þμð Þ ffiffitpffiffi
2

p
m�1ð Þσ

� �� �
2 m� 1ð Þ pσ2 þ msσ2 � imμð Þ m� 1ð Þqσ2 þ n pσ2 þ sσ2 � iμð Þð Þ

� exp � pσ2 þ sσ2 � iμð Þ2t
2 m� 1ð Þ2σ2

� μ2t

2σ2

 !

þ
mn qσ2 þ sσ2 � iμð Þ2 sgn nþ 1ð Þ � erf

iqσ2þisσ2þμð Þ ffiffitpffiffi
2

p
nþ1ð Þσ

� �� �
2 nþ 1ð Þ �qσ2 þ nsσ2 � inμð Þ nþ 1ð Þpσ2 þ m qσ2 þ sσ2 � iμð Þð Þ

� exp � qσ2 þ sσ2 � iμð Þ2t
2 nþ 1ð Þ2σ2

� μ2t

2σ2

 !

þ
np2σ4 � sgn mð Þ � erf ipσ

ffiffi
t

pffiffi
2

p
m

� �� �
exp � p2σ2t

2m2 � μ2t
2σ2

� �
2 pσ2 þ msσ2 � imμð Þ nþ 1ð Þpσ2 þ m qσ2 þ sσ2 � iμð Þð Þ

þ
mq2σ4 � sgn nð Þ þ erf iqσ

ffiffi
t

pffiffi
2

p
n

� �� �
exp � q2σ2t

2n2 � μ2t
2σ2

� �
2 �qσ2 þ nsσ2 � inμð Þ m� 1ð Þqσ2 þ n pσ2 þ sσ2 � iμð Þð Þ;

ðA4Þ

where sgn xð Þ is the sign function.
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Appendix B
Raw moments of random variables low, high and closing returns of the arithmetic
Brownian motion with a non-zero drift
Relatively complicated formulae arise in the calculation of specified moments. That

is why it is reasonable to introduce first additional symbols and explanatory
definitions, which are presented in expressions B1–B11:
The following symbols and definitions are adopted:

υ :¼ μ
ffiffi
t

p
σ

ðB1Þ

Ζ n; y; υð Þ :¼∑
∞

k¼1

1
k þ yð Þn e

�2k kþ1ð Þυ2
2kþ1ð Þ2 ; ðB2Þ

for n∈Z; n > 0; y > 0.

ζ nð Þ :¼ Z n; 0; 0ð Þ ¼∑
∞

k¼1

1
kn

; (B3)

for n∈Z; n > 1ζ nð Þ is the so-called Riemann Zeta function,
The explanatory definitions are as follows:

Ζ1 υð Þ : ¼ Ζ 1; 0; υð Þ � 2Ζ 1;
1
2
; υ

� �
þ Ζ 1; 1; υð Þ

¼ 3� 4 ln2þ 2υ2 þ ∑
∞

m¼1

υ2m∑
m

j¼1

�1ð Þmþjþ1 22jþ1 � 1
� �

ζ 2jþ 1ð Þ
2mþ2j�1m m� jð Þ! j� 1ð Þ!

¼ 3� 4 ln2þ 2� 7ζ 3ð Þ
4

� �
υ2 þ 7ζ 3ð Þ

16
� 31ζ 5ð Þ

64

� �
υ4

þ � 7ζ 3ð Þ
96

þ 31ζ 5ð Þ
192

� 127ζ 7ð Þ
1536

� �
υ6

þ 7ζ 3ð Þ
768

� 31ζ 5ð Þ
1024

þ 127ζ 7ð Þ
4096

� 511ζ 9ð Þ
49152

� �
υ8 þ⋯; ðB4Þ

Ζ2 υð Þ : ¼ 1� Ζ 2; 0; υð Þ þ Ζ 2; 1; υð Þ

¼ 2 3� 4 ln2ð Þυ2 þ 2υ4 þ ∑
∞

m¼2

υ2m ∑
m�1

j¼1

�1ð Þmþj 22jþ1 � 1
� �

ζ 2jþ 1ð Þ
2mþ2j�3m m� 1ð Þ m� j� 1ð Þ! j� 1ð Þ!

¼ 2 3� 4 ln2ð Þυ2 þ 2� 7ζ 3ð Þ
4

� �
υ4 þ 7ζ 3ð Þ

24
� 31ζ 5ð Þ

96

� �
υ6

þ � 7ζ 3ð Þ
192

þ 31ζ 5ð Þ
384

� 127ζ 7ð Þ
3072

� �
υ8

þ 7ζ 3ð Þ
1920

� 31ζ 5ð Þ
2560

þ 127ζ 7ð Þ
10240

� 511ζ 9ð Þ
122880

� �
υ10 þ⋯; ðB5Þ
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Ζ3 υð Þ : ¼ Ζ 3; 0; υð Þ þ Ζ 3; 1; υð Þ

¼ 2ζ 3ð Þ � 1þ 8 2� 3 ln2ð Þυ2 þ 12� 8 ln2� 21
4
ζ 3ð Þ

� �
υ4 þ 4

3
υ6

þ ∑
∞

m¼3

υ2m ∑
m�1

j¼1

�1ð Þmþj 4j� m� 2ð Þ 22jþ1 � 1
� �

ζ 2jþ 1ð Þ
2mþ2j�3m m� 1ð Þ m� 2ð Þ m� j� 1ð Þ! j� 1ð Þ!

¼ 2ζ 3ð Þ � 1þ 8 2� 3 ln2ð Þυ2 þ 12� 8 ln2� 21
4
ζ 3ð Þ

� �
υ4 þ 4

3
υ6

þ 4
3
� 7ζ 3ð Þ

24
� 31ζ 5ð Þ

32

� �
υ6 þ 7ζ 3ð Þ

192
þ 31ζ 5ð Þ

384
� 127ζ 7ð Þ

1024

� �
υ8

þ � 7ζ 3ð Þ
1920

� 31ζ 5ð Þ
7680

þ 127ζ 7ð Þ
6144

� 511ζ 9ð Þ
40960

� �
υ10 þ⋯; ðB6Þ

Ζ 3;
1
2
; υ

� �
¼ �8þ ∑

∞

m¼0

υ2m ∑
mþ1

j¼1

�1ð Þmþjþ1 22jþ1 � 1
� �

ζ 2jþ 1ð Þ
2mþ2j�2 m� jþ 1ð Þ! j� 1ð Þ!

¼ �8þ 7ζ 3ð Þ þ � 7ζ 3ð Þ
2

þ 31ζ 5ð Þ
8

� �
υ2

þ 7ζ 3ð Þ
8

� 31ζ 5ð Þ
16

þ 127ζ 7ð Þ
128

� �
υ4

þ � 7ζ 3ð Þ
48

þ 31ζ 5ð Þ
64

� 127ζ 7ð Þ
256

þ 511ζ 9ð Þ
3072

� �
υ6 þ⋯

þ 7ζ 3ð Þ
384

� 31ζ 5ð Þ
384

þ 127ζ 7ð Þ
1024

� 511ζ 9ð Þ
6144

þ 2047ζ 11ð Þ
98304

� �
υ8 þ⋯;

ðB7Þ

Ζ4 υð Þ : ¼ 1� Ζ 4; 0; υð Þ þ Ζ 4; 1; υð Þ
¼ 4 10� 16 ln2þ ζ 3ð Þð Þυ2 þ 2 25� 24 ln2� 7ζ 3ð Þð Þυ4

þ 12� 16 ln2
3

� 14ζ 3ð Þ
3

� 31ζ 5ð Þ
12

� �
υ6 þ 2

3
υ8

þ ∑
∞

m¼4

υ2m ∑
m�1

j¼2

�1ð Þmþj 2j� m� 1ð Þ 22jþ1 � 1
� �

ζ 2jþ 1ð Þ
2mþ2j�6m m� 1ð Þ m� 2ð Þ m� 3ð Þ m� j� 1ð Þ! j� 2ð Þ!

¼ 4 10� 16 ln2þ ζ 3ð Þð Þυ2 þ 2 25� 24 ln2� 7ζ 3ð Þð Þυ4

þ 12� 16 ln2
3

� 14ζ 3ð Þ
3

� 31ζ 5ð Þ
12

� �
υ6 þ 2

3
� 31ζ 5ð Þ

96
� 127ζ 7ð Þ

384

� �
υ8

þ 31ζ 5ð Þ
960

� 511ζ 9ð Þ
15360

� �
υ10 þ⋯; ðB8Þ
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Η1 υð Þ : ¼ 1
2
þ 1
2υ2

�3þ Ζ2 υð Þ þ Ζ3 υð Þð Þ þ 1
4υ4

8Ζ2 υð Þ � Ζ4 υð Þð Þ

¼ 3� 4 ln2þ 4� 8 ln2
3

� 7ζ 3ð Þ
4

� �
υ2

þ 1
2
� 7ζ 3ð Þ

96
� 155ζ 5ð Þ

384

� �
υ4 þ 7ζ 3ð Þ

960
þ 31ζ 5ð Þ

640
� 889ζ 7ð Þ

15360

� �
υ6

þ � 7ζ 3ð Þ
11520

� 217ζ 5ð Þ
46080

þ 2159ζ 7ð Þ
184320

� 511ζ 9ð Þ
81920

� �
υ8 þ⋯; (B9)

Η2 υð Þ : ¼ �Ζ 3;
1
2
; υ

� �
þ 4Ζ1 υð Þ þ 1

2
Ζ2 υð Þ

� 3
2υ2

4Ζ1 υð Þ þ Ζ2 υð Þð Þ þ 3
υ4

Ζ2 υð Þ

¼ 5� 4 ln2� 7ζ 3ð Þ
4

þ 8� 4 ln2� 21ζ 3ð Þ
8

� 31ζ 5ð Þ
16

� �
υ2

þ 1� 7ζ 3ð Þ
64

� 31ζ 5ð Þ
128

� 635ζ 7ð Þ
1024

� �
υ4

þ 7ζ 3ð Þ
640

þ 31ζ 5ð Þ
1280

þ 2413ζ 7ð Þ
30720

� 3577ζ 9ð Þ
30720

� �
υ6

þ � 7ζ 3ð Þ
7680

� 31ζ 5ð Þ
15360

� 127ζ 7ð Þ
15360

þ 6643ζ 9ð Þ
245760

� 2047ζ 11ð Þ
131072

� �
υ8 þ⋯;

ðB10Þ

Η3 υð Þ : ¼ � 3
2
� υ2

2
þ 6Ζ1 υð Þ þ 3

4
Ζ2 υð Þ � 3

2
Ζ 3;

1
2
; υ

� �

þ 1
υ2

9
4
� 9Ζ1 υð Þ � 3Ζ2 υð Þ � 3

4
Ζ3 υð Þ

� �

þ 1
υ4

� 3
2
þ 3ζ 3ð Þe�υ2

2 þ 3Ζ2 υð Þ � 3
2
Ζ3 υð Þ þ 3

4
Ζ4 υð Þ

� �

¼ 6� 6 ln2� 9ζ 3ð Þ
4

þ 8� 4 ln2� 9ζ 3ð Þ
4

� 93ζ 5ð Þ
32

� �
υ2

þ 1� 5ζ 3ð Þ
32

þ 31ζ 5ð Þ
256

� 1905ζ 7ð Þ
2048

� �
υ4

þ ζ 3ð Þ
64

� 93ζ 5ð Þ
2560

þ 3937ζ 7ð Þ
20480

� 3577ζ 9ð Þ
20480

� �
υ6

þ � ζ 3ð Þ
768

þ 31ζ 5ð Þ
6144

� 889ζ 7ð Þ
30720

þ 24017ζ 9ð Þ
491520

� 6141ζ 11ð Þ
262144

� �
υ8 þ⋯:

ðB11Þ

Each of the descriptive functions given in Equations B4–B11 is calculated in
two alternative forms: first as a function of exponential series of the variable υ
and then as a power series of the variable υ. The first forms are more compact;
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however, numerical calculations of their values are more complex. The second
forms have more complicated notations, but the convergence of such series is
much faster. For the same reasons, expressions that describe the properties of
considered estimators given in section 3.1 are also given in two forms;
however, the first form is presented in Appendix D.
Based on formulae 11–13, one can calculate the expected values of any powers of

variables At;Ct;Xt and their products. Derived expressions for selected raw moments
till the fourth order for υ≠0 μ≠0ð Þ are presented next. The first moments are given in
the following forms:

E Xt½ � ¼ μt ¼ υσ
ffiffi
t

p
; (B12)

E Ct½ � ¼ σ
ffiffi
t

p
2

1
υ
þ υ

� �
erf

υffiffiffi
2

p
� �

þ
ffiffiffi
2
π

r
e�

υ2
2 þ υ

 !
; (B13)

E At½ � ¼ σ
ffiffi
t

p
2

� 1
υ
þ υ

� �
erf

υffiffiffi
2

p
� �

�
ffiffiffi
2
π

r
e�

υ2
2 þ υ

 !
: (B14)

The second moments are described by the following formulae:

E Xt
2

� � ¼ σ2t þ μ2t2 ¼ σ2t 1þ υ2
� �

; (B15)

E Ct
2

� � ¼ σ2t � 1
2υ2

þ 2υ2 þ 1

� �
erf

υffiffiffi
2

p
� �

þ 1þ υ2ð Þe�υ2
2ffiffiffiffiffi

2π
p

υ
þ 1þ υ2

2

" #
; (B16)

E At
2

� � ¼ σ2t
1
2υ2

� 2υ2 � 1

� �
erf

υffiffiffi
2

p
� �

� 1þ υ2ð Þe�υ2
2ffiffiffiffiffi

2π
p

υ
þ 1þ υ2

2

" #
; (B17)

E AtCtð Þ ¼ σ2t � 1
2
þ 1
4υ2

1� Ζ 2; 0; υð Þ þ Ζ 2; 1; υð Þð Þ
� �

(B18)

E CtXt½ � ¼ σ2t � 1
2υ2

þ 2υ2 þ 1

� �
erf

υffiffiffi
2

p
� �

þ 1þ υ2ð Þe�υ2
2ffiffiffiffiffi

2π
p

υ
þ 1
2
þ υ2

2

" #
; (B19)

E AtXt½ � ¼ σ2t
1
2υ2

� 2υ2 � 1

� �
erf

υffiffiffi
2

p
� �

� 1þ υ2ð Þe�υ2
2ffiffiffiffiffi

2π
p

υ
þ 1
2
þ υ2

2

" #
: (B20)

The third moment is expressed as follows:

E Xt
3

� � ¼ 3σ2μt2 þ μ3t3 ¼ σ3t
3
2 3υþ υ3
� �

: (B21)

The fourth moments are described by the following equations:

E Xt
4

� � ¼ 3σ4t2 þ 6σ2μ2t3 þ μ4t4; (B22)

E At
2Xt

2 þ Ct
2Xt

2
� � ¼ 4σ4t2 þ 7σ2μ2t3 þ μ4t4; (B23)

E At
4 þ Ct

4
� � ¼ 6σ4t2 þ 8σ2μ2t3 þ μ4t4; (B24)
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E At
3Xt þ Ct

3Xt

� � ¼ 9
2
σ4t2 þ 15

2
σ2μ2t3 þ μ4t4; (B25)

E AtXt
3 þ CtXt

3
� � ¼ 3σ4t2 þ 6σ2μ2t3 þ μ4t4; (B26)

E At
2Ct

2
� � ¼ σ4t2Η1 υð Þ; (B27)

E At
2CtXt þ AtCt

2Xt

� � ¼ σ4t2 Η2 υð Þ � υ2

2
� 1
2

� �
; (B28)

E AtCtXt
2

� � ¼ σ4t2
1
2
Η2 υð Þ � υ2

2
� 1
2

� �
; (B29)

E At
3Ct þ AtCt

3
� � ¼ σ4t2Η3 υð Þ: (B30)

Appendix C
Raw moments of random variables low, high and closing returns of the arithmetic
Brownian motion with a zero drift
Moments of random variables, presented in Equations B12–B30, can be calculated
analogously for υ=0 (μ=0) using the same formulae 11–13. However, in this case,
limits of functions in the right hand have to be evaluated for υ→ 0 (μ→ 0). This is
relatively easy if the expressions in Equations B4–B11 are applied. The results of such
calculations, presented in Equations C1–C13, can be compared with the outcomes of
Garman and Klass (1980, p. 74).
The first moments have the following forms:

E Xt½ � ¼ 0; (C1)

E Ct½ � ¼ �E At½ � ¼
ffiffiffi
2

p
σ
ffiffi
t

pffiffiffi
π

p : (C2)

The second moments are described by the following expressions:

E Xt
2

� � ¼ E Ct
2

� � ¼ E At
2

� � ¼ σ2t; (C3)

E AtCtð Þ ¼ 1� 2 ln2ð Þσ2t; (C4)

E CtXt½ � ¼ E AtXt½ � ¼ 1
2
σ2t: (C5)

The fourth moments are expressed by the following equations:

E Xt
4

� � ¼ E At
4

� � ¼ E Ct
4

� � ¼ 3σ4t2; (C6)

E At
2Xt

2 þ Ct
2Xt

2
� � ¼ 4σ4t2; (C7)

E At
3Xt þ Ct

3Xt

� � ¼ 9
2
σ4t2 (C8)

E At
4 þ Ct

4
� � ¼ 6σ4t2 þ 8σ2μ2t3 þ μ4t4; (C9)
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E At
2Ct

2
� � ¼ 3� 4 ln2ð Þσ4t2; (C10)

E At
2CtXt þ AtCt

2Xt

� � ¼ 9
2
� 4 ln2� 7

4
ζ 3ð Þ

� �
σ4t2; (C11)

E AtCtXt
2

� � ¼ 2� 2 ln2� 7
8
ζ 3ð Þ

� �
σ4t2; (C12)

E AtCt
3 þ At

3Ct

� � ¼ 6� 6 ln2� 9
4
ζ 3ð Þ

� �
σ4t2: (C13)

Appendix D
Properties of estimators of PARKINSON, GARMAN–KLASS and ROGERS–SATCHELL

Raw moments of random variables presented in Appendices B and C are applied to

derive the expected value and the MSE of estimators of Parkinson s2 ̂1 tð Þ , G-K - s2 ̂2 tð Þ,
R-S - s2 ̂3 tð Þ. The following formulae are valid for υ≠0 μ≠0ð Þ:

E s2
̂

1 tð Þ
h i

¼ 1
4 ln2

3� 1
2υ2

Ζ2 υð Þ þ υ2
� �

σ2t; (D1)

MSE s21
̂
tð Þ

h i
¼ 1þ Z2 υð Þ

4υ2 ln2

	

þ6� 24 ln2þ 8� 8 ln2ð Þυ2 þ υ4 þ 6Η1 υð Þ � 4Η3 υð Þ
16 ln22

�σ4t2;

(D2)

E s22
̂

tð Þ
" #

¼ 5
2
� 2 ln2

� �
þ 3

2
� 2 ln2

� �
υ2 � 1

4υ2
Ζ2 υð Þ

� �
σ2t (D3)

MSE s22
̂
tð Þ

h i
¼ 11

2
� 18 ln2þ 12 ln22þ 13� 36 ln2þ 24 ln22

� �
υ2

	

þ 3
2
� 2 ln2

� �2

υ4 þ 3Η1 υð Þ
2

þ 2 ln2� 1ð ÞΗ2 υð Þ � Η3 υð Þ þ Z2 υð Þ
2υ2

#
σ4t2;

(D4)

Var s23
̂

tð Þ
" #

¼ 2Η1 υð Þ � Η2 υð Þð Þσ4t2: (D5)

After further transformations of Equations D1–D5, the forms presented,
respectively, in (17), (18), (21), (22) and (25) are obtained.
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