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a b s t r a c t

In this study, we describe a modification of the GARCH model that we have formulated,
where its parameters are estimated based on closing prices as well as on information
related to daily minimum and maximum prices. In an empirical application, we show that
the use of low and high prices in the derivation of the likelihood function of the GARCH
model improved the volatility estimation and increased the accuracy of volatility forecasts
based on this model during the period of turmoil, relative to using closing prices only. This
analysis was performed for two stock indices from developed markets, i.e., S&P 500 and
FTSE 100, and for two stock indices from emerging markets, i.e., the Polish WIG20 index
and the Greek Athex Composite Share Price Index. The main result obtained in this study
is robust to both the forecast evaluation criterion applied and the proxy used for the daily
volatility.
© 2016 International Institute of Forecasters. Published by Elsevier B.V. All rights reserved.
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1. Introduction

The modelling and forecasting of the volatility of asset
returns is a key issue in many financial and economic
applications. One of the most popular volatility models is
the GARCH model, and the estimation of its parameters
is based solely on the daily closing prices in the majority
of cases. However, a single return gives a weak signal for
the current level of volatility. This implies that GARCH
models are poorly suited to situations where the volatility
changes suddenly to a new level. For instance, when
the volatility increases sharply on day t and subsequent
days, the conditional variance of the GARCH model will
not change on day t and will increase only gradually
on the subsequent days. Thus, the conditional variance
will take many periods to reach a new level of volatility
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(e.g. Andersen, Bollerslev, Diebold, & Labys, 2003; Hansen,
Huang, & Shek, 2012). However, while the commonly
available databases do contain the daily closing prices, they
also include daily low and high prices, which can be used
successfully for volatility estimation. The use of low and
high prices is one area in which extensive research, both
theoretical and empirical, is currently being conducted
(see the review by Chou, Chou, & Liu, 2010). This renewed
interest within the scientific community is mainly because
the application of such data yieldsmore accurate estimates
and forecasts of volatility than those based only on closing
prices (e.g., Chou, 2005; Li & Hong, 2011).

The research concerning the use of data on low and
high prices can be divided into three main groups (we
deliberately omit the use of so-called intraday or high
frequency data, and focus on daily data). The first group
consists of the so-called price range estimators, which
include the best-known estimators of Garman and Klass
(1980), Parkinson (1980), Rogers and Satchell (1991) and
Yang and Zhang (2000). Financial market practitioners
commonly use range estimators to estimate the volatility
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because they are significantly more efficient than the es-
timator calculated as the daily squared return of closing
prices. However, these estimators are less popular among
scientists because they neglect the temporal dependence
of returns (such as conditional heteroscedasticity). The sec-
ond group are the so-called range-based volatility models,
which are widely used for closing prices or their modifica-
tions, although they are applied directly to themodelling of
the price range (e.g., see Alizadeh, Brandt, & Diebold, 2002;
Brandt & Jones, 2006; Chou, 2005; Engle &Gallo, 2006). The
third group aremodels of interval-valued data (e.g., see Ar-
royo, Espínola, & Maté, 2011; Arroyo, González-Rivera, &
Maté, 2010; Maia & de Carvalho, 2011; Maia, de Carvalho,
& Ludermir, 2008). High-low intervals are linked naturally
to the concept of volatility. This study does not discuss the
latter two uses of low and high prices.

Only a few studies have used low and high prices
directly for formulating the estimation procedure in
existing and known volatility models. These include the
GARCH models of Lildholdt (2002) and Venter, De Jongh,
and Griebenow (2005), who derived likelihood functions
based on low, high and closing prices. The present study
makes twomain contributions. The first is the presentation
of a modification of the GARCH model, where the
parameters are estimated based on low, high and closing
prices (for details and less complex parameterizations,
see Perczak & Fiszeder, 2014). Lildholdt (2002) assumed
that, over each day, a new incremental log-price process
follows an arithmetic Brownian motion with a constant
volatility for that day, and therefore applied the GARCH
model with a normal conditional innovation distribution.
However, it is well known that the normal distribution is
often too light-tailed to be an appropriate distribution for
most financial time series. Therefore, similarly to Venter
et al. (2005), we assume a normal-inverse Gaussian (NIG)
conditional innovation distribution for the GARCH model.
Furthermore, our formulation of the model differs in two
respects. First, we apply the significantly more efficient
range estimator of the variance, instead of the estimator
calculated as the daily squared return of closing prices,
as is commonly used in the standard GARCH model.
Second, we assume slight simplifications where different
parameterizations of random variables and stochastic
processes are applied.

The study’s second main contribution is to show that
the use of additional information related to low and high
prices in the derivation of the likelihood function of the
GARCH model can improve the volatility estimation and
increase the accuracy of volatility forecasts based on a
model for periods of turmoil, comparedwith only applying
closing prices. The idea of periods of turmoil refers to
periods with large declines in stock prices and very high
levels of volatility. To the best of our knowledge, this
is the first attempt in the literature to demonstrate the
superiority of this approach for forecasting. This issue is
important from a practical viewpoint, because low and
high prices are almost always commonly available with
closing prices for financial series. Therefore, it can be stated
that the omission of such data leads to the loss of important
information.
It is well known that the extreme values that are as-
sociated with turbulent and crisis periods have a sig-
nificant influence on the estimation results. One of the
main weaknesses of the GARCH process where the pa-
rameters are estimated based on closing prices is a slow
response to abrupt changes in the market (e.g. Andersen
et al., 2003; Hansen et al., 2012). The use of low and high
prices in the estimation of the parameters should reduce
the impact of this negative effect significantly.

The remainder of this paper is organized as follows.
Section 2 provides definitions of the distributions and
processes employed in this study. Section 3 describes
the parameterization of the GARCH model, where the
parameters are estimated based on low, high and closing
prices. In Section 4, this approach is then used tomodel the
volatility of two well-known stock indices from developed
markets, S&P 500 and FTSE 100, as well as the Polish
stock index WIG20. Section 5 verifies the forecasting
performance both for the usual period and for the period of
turmoil due to the financial crisis in the USA. In Section 6,
we perform a robustness check for additional proxies for
volatility and for a different period of turmoil, namely the
Greek debt crisis, using the Athex Composite Share Price
Index. Section 7 provides our conclusions.

2. Definitions of the distributions and processes em-
ployed in this study

Let St,τ be the price of a financial instrument observed
on day t (t ∈ N, 0 < t) after time τ (0 ≤ τ ≤ 1) from the
last quotation the day before. Thus, there is the identity
St−1,1 = St,0. The daily (24-hour) minimum andmaximum
prices are defined as Lt = min0≤τ≤1 St,τ and Ht =

max0≤τ≤1 St,τ , respectively. In addition, we employ the
following definitions of daily low, high and closing returns:
At = ln


Lt/St,0


, Ct = ln


Ht/St,0


, and Xt = ln


St,1/St,0


.

In practice, only four values of quotations during the
day are usually available for each day t (the acquisition
of intraday data is usually an added cost, and such data
are not available for all assets): today’s open price Ot ,
today’s observed low price L

∗

t , today’s observed high price
H

∗

t , and today’s closing price St . If today’s open price Ot is
different from yesterday’s closing price St−1 (the so-called
night returns are nonzero), then the variables At and Ct
can be redefined as: At = ln


min


St−1, L

∗

t


/St−1


, Ct =

ln

max


St−1,H

∗

t


/St−1


(see Fiszeder & Perczak, 2013).

For a standardWiener process Bτ , τ ≥ 0, the Brownian
motion XB

τ = µτ + σBτ is defined. Let s ∈ R+ be a fixed
value, AB

s = min0≤τ≤s XB
τ and CB

s = max0≤τ≤s XB
τ . The

probability density function of XB
s with upper and lower

absorbing barriers equal to c and a, respectively, is given
by the formula (see Cox & Miller, 1965, p. 222, equation
78):

fXB
s


a, c, x; µs, σ 2s


=

1
dx

P

AB
s > a, CB

s ≤ c, XB
s ∈ dx


=

1
√
2πσ

√
s
e

2µx−µ2s
2σ2

×

∞
k=−∞


e−

(x−2k(c−a))2

2σ2s − e−
(x−2c−2k(c−a))2

2σ2s


, (1)

where a ≤ 0 ≤ c , a ≤ x ≤ c.
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The density of the random vector

AB
s , CB

s , XB
s


can be

expressed as (see Fiszeder & Perczak, 2013):

fAB
s ,CB

s ,XB
s


a, c, x; µs, σ 2s


=

1
dadcdx

P

AB
s ∈ da, CB

s ∈ dc, XB
s ∈ dx


= −

∂2fXB
s


a, c, x; µs, σ 2s


∂a∂c

=
2
√
2e

2µsx−µ2s2

2σ2s
√

πσ 5s5/2

∞
k=−∞


g

a, c, x; k, k, σ 2s


− g


a, c, x; k, k + 1, σ 2s


, (2)

where the function g is described as:

g

a, c, x; k1, k2, σ 2s


= k1k2


(x − 2k2c + 2k1a)2 − σ 2s


e−

(x−2k2c+2k1a)
2

2σ2s . (3)

When the density of the random vector

AB
s , CB

s , XB
s


is

defined by Eq. (2), it will have the distribution ACN , i.e.,
AB
s , CB

s , XB
s


∼ ACN


µs, σ 2s


.

A random variable W has the inverse Gaussian distri-
bution denoted by IG (δ, γ ), with parameters 0 < δ and
0 ≤ γ , if its probability density function fW (w, δ, γ ) de-
termined for w > 0 has the form (see Barndorff-Nielsen,
1997, p. 2, equation 2.5):

fW (w; δ, γ ) =
δ

√
2π

w−
3
2 eδγ−

δ2
w +γ 2w

2 . (4)

If β ∈ R, γ ∈ R+, δ ∈ R+, µ ∈ R, Z ∼ N (0, 1) and
W ∼ IG (δ, γ ), then the random variable X |W = µ +

βW +
√
WZ has the normal distribution N (µ + βW ,W ),

while X has the NIG distribution X ∼ NIG (α, β, δ, µ)

for α =


β2 + γ 2 (see Barndorff-Nielsen & Shephard,
2001, p. 15).

Let s ∈ R+ be a fixed parameter, let the random
variable Y have the distribution IG


δ
√
s, γ

√
s

, and let Bτ

be theWiener process. If the process Xτ is described by the
equation:

Xτ |Y = µτ + βYτ +
√
YBτ , (5)

then the following properties are met: Xτ |Y ∼ N(µτ +

βYτ , Yτ) and Ys ∼ IG (δs, γ ). In addition, assuming
that W = Ys, it is easy to show that we have Xs ∼

NIG (α, β, δs, µs) at the point τ = s.
The process Xτ is referred to as Brownian inverse

Gaussian (BIG). Its specification is a modification of the
process described by Venter, De Jongh, and Griebenow
(2006, p. 102, equation 6).

Let As = min0≤τ≤s Xτ and Cs = max0≤τ≤s Xτ ; the
density ofXs withupper and lower absorbing barriers equal
to c and a, respectively, is given by the formula (see Perczak
& Fiszeder, 2014; Venter et al., 2005, equation 4.5):

fXs (a, c, x; α, β, δs, µs)

=
1
dx

P (As > a, Cs ≤ c, Xs ∈ dx)
=


∞

0
fXB

s |W=w (a, c, x; µs + βw, w) fW (w; δs, γ ) dw

= ακ

∞
k=−∞


K1

α
√

θ1 + ϑ


√
θ1 + ϑ

−
K1

α
√

θ2 + ϑ


√
θ2 + ϑ


, (6)

where:
κ =

1
π
δseβ(x−µs)+δγ s, θ1 = (2k (c − a) − x)2, θ2 =

(2c + 2k (c − a) − x)2, ϑ = δ2s2 + (x − µs)2 − x2 and

Kλ (z) =
1
2


∞

0 yλ−1e−
1
2 z

y+ 1

y


dy.

Using Eq. (6), the joint density of the random vector
(As, Cs, Xs) can be derived:

fAs,Cs,Xs (a, c, x; α, β, δs, µs)

= −
∂2fXs (a, c, x; α, β, δs, µs)

∂a∂c

=


∞

0
fAB

s ,CB
s ,XB

s |W=w (a, c, x; µs + βw, w)

× fW (w; δs, γ ) dw

= 4α2κ

∞
k=−∞


k2Λ (α, θ1, ϑ)

− k (k + 1) Λ (α, θ2, ϑ)

, (7)

where:

Λ (α, θ, ϑ) = αθ
K1

α
√

θ + ϑ


(θ + ϑ)
3
2

+ (3θ − ϑ)2
K2

α
√

θ + ϑ


(θ + ϑ)2
.

The randomvector (As, Cs, Xs)will have the distribution
denoted by ACNIG, i.e., (As, Cs, Xs) ∼ ACNIG (α, β, δs, µs),
when its density is defined by Eq. (7). Using rela-
tively simple transformations of Eq. (7), this distribu-
tion can also be written in the different parameterization
ACNIG


α, β, δs, µs


, with invariant values α = αδs, β =

βδs, γ =


α2

− β
2
:

fAs,Cs,Xs

a, c, x; α, β, δs, µs


= 4α2κ

∞
k=−∞


k2Λ


α

δs
, θ1, ϑ



− k (k + 1) Λ


α

δs
, θ2, ϑ


, (8)

where: κ =
1

πδs e
β

x−µs
δs +γ .

Above, we showed that if Xτ is the process defined
by Eq. (5), then (As, Cs, Xs) ∼ ACNIG


α, β, δs, µs


. This

relationship does not have to be satisfied in the opposite
direction. The random vector (As, Cs, Xs)may also have the
ACNIG


α, β, δs, µs


distribution when Xτ is not the BIG

process.
The next section assumes that, for a fixed value

t (t ∈ N, 0 < t), a return defined as Xt,τ = ln

St,τ/St,0


is

the process forwhich s = 1. Thus, it follows that (At , Ct , Xt)
has the ACNIG distribution. The exact parameters of this
distribution are presented in the next section.
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Based on the previous findings, the following implica-
tion holds:

W = sY ∧ Y ∼ IG

δ
√
s, γ

√
s


∧ (As, Cs, Xs) |W ∼ ACN (µs + βW ,W )

⇓

(As, Cs, Xs) ∼ ACNIG (α, β, δs, µs) . (9)

The Rogers and Satchell (1991) estimator is an unbiased
estimator of the variance of the arithmetic Brownian
motion, i.e., E [Cs (Cs − Xs) + As (As − Xs) |W ] = W . Based
on the implication thatW ∼ IG (δs, γ ) ⇒ E [W ] =

δs
γ
, the

following identities can be derived:

E [Cs (Cs − Xs) + As (As − Xs)]
= E [E [Cs (Cs − Xs) + As (As − Xs) |W ]]

= E [W ] =
δs
γ

. (10)

The variance of a NIG-distributed random variable is
well known. In particular, if Xs ∼ NIG


α, β, δs, µs


, then

Var [Xs] =
α2δ2s2

γ 3 (compare for example Barndorff-Nielsen,
1997, p. 2, formula 2.8; or Jensen & Lunde, 2001, p. 327).

It is desirable to find an unbiased estimator of the
variance of the BIG process based on low, high and closing
prices. It is easy to check that the expected value for the
following estimator:

G (s) =
α2

γ 2
[Cs (Cs − Xs) + As (As − Xs)]

=
α2

γ 2 [Cs (Cs − Xs) + As (As − Xs)] (11)

is equal to:

E [G (s)] =
α2

γ 2

δs
γ

=
α2δs
γ 3

=
α2δ2s2

γ 3 . (12)

This implies that, for the known values of α and β , the
equality holds E [G (s)] = Var [Xs], which means that G (s)
is the required unbiased estimator of the variance of the
BIG process.

3. The S&GARCH-NIG model for low, high and closing
prices

Several extensions of the GARCH model based on low,
high and closing prices were proposed by Perczak and
Fiszeder (2014). We present the most complex model
here (note that the S&GARCH-NIG-HLC and GARCH (1, 1)
specifications are considered, but can be generalized to the
GARCH (p, q) model):

(At , Ct , Xt) |ℑt−1 ∼ ACNIG


α, β,

γ
3
2

α


ht , µ


, (13)

ϵ2
t =

α2

γ 2 [Ct (Ct − Xt) + At (At − Xt)] , (14)

ht = ω0 + ω1ϵ
2
t−1 + ξ1ht−1. (15)
This parameterization of the model has the following
properties: Var [ϵt |ℑt−1] = ht and Xt |ℑt−1 ∼ NIG

α, β,
γ

3
2

α

√
ht , µ


. The parameters of Eq. (15) should

ensure the positive variance and covariance stationarity
of the process. In Eq. (14), we apply the new unbiased
estimator of the daily variance presented in the previous
section. This is a modification of the Rogers and Satchell
(1991) estimator, and should be more efficient than the
estimator calculated as the daily squared return of closing
prices (as is commonly used in the standard GARCH
model), due to the use of additional relevant information
on the variability of prices during the day. We do not have
a formal proof of this property at present, but it has been
confirmed by Monte Carlo simulations.

The NIG conditional innovation distribution for the
GARCH model is employed as a way of providing a better
description of the fat tails of the distributions of most
financial time series. This distribution was first used in
the stochastic volatility model by Andersson (2001) and
Barndorff-Nielsen (1997), before Jensen and Lunde (2001)
applied it in their NIG-S&ARCH model. We prefer the
NIG distribution to the Student-t distribution, which is
the distribution that is used most commonly in empirical
studies, because all of the moments of the distribution
are finite. For example, the application of the Student-
t distribution to logarithmic returns complicates the
valuation of derivatives significantly (see Duan, 1999).

The model formulated in Eqs. (13)–(15) is a modifica-
tion of the model proposed by Venter et al. (2005), apply-
ing the range estimator in Eq. (14) instead of the estimator
calculated as the daily squared return of closing prices, and
also assuming slight simplifications with different param-
eterizations of the random variables and stochastic pro-
cesses that are employed.

It should be noted that the proposed model is parsimo-
nious and there are no additional parameters relative to the
model based only on the returns of closing prices.

The parameters of themodel given in Eqs. (13)–(15) can
be estimated by maximum likelihood with the likelihood
function being based on low, high and closing prices:α,


β, ω0, ω1,ξ1,µ

= argmax
{α, β, ω0, ω1, ξ1, µ}

ln LACNIG

α, β, ω0, ω1, ξ1, µ


= argmax

{α, β, ω0, ω1, ξ1, µ}

n
t=1

ln fACNIG


at , ct , xt , α, β,

γ
3
2

α


ht (ω0, ω1, ξ1), µ


. (16)

4. Modelling the volatility of stock indices: S&P 500,
FTSE 100 and WIG20

The usefulness of the model considered is illustrated by
studying the three selected stock indices: S&P 500, FTSE



402 P. Fiszeder, G. Perczak / International Journal of Forecasting 32 (2016) 398–410
Table 1
Results of the estimations for the usual period.

Parameters S&P 500 FTSE 100 WIG20
Model 1 Model 2 Model 3 Model 1 Model 2 Model 3 Model 1 Model 2 Model 3

µ · 103 0.465 3.002 0.391 0.213 5.265 0.538 3.325 8.002 1.154
(2.319) (0.550) (0.231) (0.883) (0.453) (0.218) (1.414) (1.035) (0.428)

ω0 · 106 1.913 2.806 1.814 3.157 2.517 2.703 1.882 3.423 1.822
(1.184) (1.104) (1.111) (1.651) (0.802) (1.111) (1.313) (1.269) (1.266)

ω1
0.042 0.108 0.043 0.079 0.114 0.081 0.038 0.097 0.036
(0.016) (0.025) (0.016) (0.028) (0.025) (0.026) (0.014) (0.018) (0.013)

ξ1
0.913 0.816 0.915 0.846 0.824 0.854 0.950 0.875 0.953
(0.035) (0.048) (0.034) (0.059) (0.022) (0.053) (0.018) (0.024) (0.017)

α or ν
8.464 2.548 24.994 3.981 2.576 15.652 2.640 3.492 7.934
(12.679) (0.254) (24.354) (1.560) (0.241) (7.862) (1.098) (0.375) (2.367)

β or ζ
−0.016 −0.775 0.942 −0.506 −1.358 0.847 −0.319 −1.210 0.959
(1.047) (0.176) (0.044) (0.315) (0.165) (0.046) (0.243) (0.217) (0.047)

ln L1 2729 2708 2729 2762 2735 2765 2270 2260 2268
RV – −2.541* 0.591 – −2.846* 1.609 – −1.496 −1.517
ln L2 10493 10763 – 10771 10873 – 9256 9313 –
RV – 6.097* – – 3.602* – – 3.658* –
LB(7) 7.614 7.511 7.621 10.241 11.239 9.759 13.132 11.548 13.247
LM(7) 2.794 4.076 2.804 12.108 17.952* 10.542 11.968 15.645* 12.941
AD 1.174 6.198* 1.062 0.355 3.760* 0.289 0.536 2.611* 0.408

Model 1 is the S&GARCH-NIG model for closing prices, Model 2 is the S&GARCH-NIG-HLC model, and Model 3 is the GARCH-skewed Student-t model.
Standard errors are reported in parentheses. The parameters ν and ζ represent the degrees of freedom and the asymmetry of the skewed Student-
t distribution, respectively. ln L1 and ln L2 are the logarithms of the likelihood functions based solely on closing prices, and based on low, high and
closing prices, respectively. RV is the Rivers-Vuong test for model selection, where comparisons were made with the S&GARCH-NIG model, for which
the parameters were estimated based only on closing prices as the benchmark. LB, LM and AD are the Ljung–Box test for the presence of autocorrelation,
the Engle test for the presence of the ARCH effect and the Anderson–Darling goodness of fit test, respectively.

* Indicates that the null hypothesis was rejected at the 0.05 level.
100 and WIG20. The first two indices are those that are
followed the most often by investors in equity indices
representative of the USA and UK stock markets, while
the WIG20 index is the Polish stock index quoted on
the Warsaw Stock Exchange (after December 31, 2015,
the WIG20 index will be replaced by a wider index, the
WIG30). The Polish market is an example of a rapidly
growing emerging market. There have been relatively few
studies of Polish financial time series compared with other
emerging or developed markets.

First, an initial valuation of the models considered was
performed for daily logarithmic returns for the three-year
period from January 2, 2004, to December 29, 2006 (757
returns). A shorter estimation period is not recommended,
due to the relatively complicated likelihood functions
required. Venter et al. (2005) introduced a similar model
and used 1000 observations. In contrast, Forsberg and
Bollerslev (2002) and Jensen and Lunde (2001) applied
the GARCH-NIG and NIG-S&ARCHmodels and used almost
10 years and 30 years of daily returns, respectively.

The reference model is the S&GARCH-NIG, where the
parameters are estimated based only on closing prices,
i.e., an extension of the model of Jensen and Lunde (2001)
to the GARCH specification. The second model is the pro-
posed S&GARCH-NIG-HLC model given in Eqs. (13)–(15),
where the parameters are estimated based on low, high
and closing prices. As was mentioned in the introduction,
this parameterization is a slight modification of the model
proposed by Venter et al. (2005). A natural competitor for
the NIG distribution is the skewed Student-t distribution.
Both distributions can describe such asymmetry and lep-
tokurtosis, which is why the comparison also includes the
GARCH model with the skewed Student-t conditional in-
novationdistribution (whichwe refer to asGARCH-skewed
Student-t), where the parameters are estimated based on
closing prices (for a detailed specification of themodel, see
e.g. Osiewalski & Pipień, 1999). The Student-t distribution
is the distribution that is used most frequently in empiri-
cal applications for financial series. There was no statisti-
cally significant autocorrelation among the returns, which
is why there is only a constant in the conditional mean
equation. The parameters of these models are estimated
using the maximum likelihood method. All three models
have the same numbers of parameters (the other exten-
sions of the GARCH model based on low, high and clos-
ing prices presented by Perczak and Fiszeder (2014), are
omitted deliberately because they are special cases of the
S&GARCH-NIG-HLC model). The results of the estimations
are presented in Table 1.

The logarithms of the likelihood function for the
S&GARCH-NIG and GARCH-skewed Student-t models are
based solely on closing prices (indicated by ln L1). For
purposes of information only, the logarithms of the
likelihood function ln LACNIG based on low, high and closing
prices were also calculated (denoted ln L2). During the
estimation of the parameters of the S&GARCH-NIG-HLC
model, the value of ln L2 was maximized, but the value
of ln L1 was also calculated for information purposes. The
measure ln L2 includes more relevant information on the
variability in the prices of financial instruments (low and
high prices certainly comprise valid information from the
point of view of volatilitymeasurement, see e.g. Chou et al.,
2010), which is why we can assume that it is more reliable
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Table 2
Results estimated for the turbulent period during the financial crisis in the USA.

Parameters S&P 500 FTSE 100 WIG20
Model 1 Model 2 Model 3 Model 1 Model 2 Model 3 Model 1 Model 2 Model 3

µ · 103 2.159 3.745 0.255 1.276 4.114 0.367 −1.668 4.473 −0.120
(0.631) (0.543) (0.413) (0.896) (0.707) (0.411) (2.282) (1.532) (0.650)

ω0 · 106 1.881 1.435 1.617 3.081 2.154 2.707 5.378 7.164 5.316
(1.437) (0.775) (1.328) (1.647) (1.103) (1.512) (3.326) (2.363) (3.299)

ω1
0.117 0.289 0.123 0.122 0.252 0.120 0.061 0.146 0.059
(0.025) (0.029) (0.024) (0.026) (0.032) (0.024) (0.017) (0.020) (0.017)

ξ1
0.888 0.754 0.885 0.872 0.756 0.875 0.927 0.832 0.928
(0.021) (0.023) (0.019) (0.024) (0.030) (0.022) (0.020) (0.022) (0.020)

α or ν
1.089 1.847 5.522 2.394 2.536 9.117 5.085 2.677 12.977
(0.305) (0.171) (1.386) (0.864) (0.248) (3.058) (2.671) (0.271) (5.593)

β or ζ
−0.159 −0.533 0.858 −0.110 −0.622 0.909 0.204 −0.522 1.000
(0.070) (0.094) (0.040) (0.122) (0.122) (0.047) (0.300) (0.178) (0.054)

ln L1 2153 2141 2154 2186 2188 2186 1912 1888 1912
RV – −1.108 0.231 – 0.265 0.570 – −2.444*

−0.364
ln L2 9126 9242 – 9022 9105 – 8110 8339 –
RV – 4.712* – – 3.224* – – 5.435* –
LB(7) 11.988 13.898 12.396 13.571 14.417* 13.592 5.867 6.104 5.872
LM(7) 4.951 2.162 5.534 7.561 10.806 7.494 18.905* 8.573 18.729*

AD 0.734 8.877* 1.329 0.588 2.991* 0.951 0.361 9.565* 0.291
Model 1 is the S&GARCH-NIG model for closing prices, Model 2 is the S&GARCH-NIG-HLC model, and Model 3 is the GARCH-skewed Student-t model.
Standard errors are reported in parentheses. The parameters ν and ζ represent the degrees of freedom and the asymmetry of the skewed Student-
t distribution, respectively. ln L1 and ln L2 are the logarithms of the likelihood function based solely on closing prices, and based on low, high and
closing prices, respectively. RV is the Rivers-Vuong test for model selection, where comparisons were made with the S&GARCH-NIG model, for which
the parameters were estimated based only on closing prices as the benchmark. LB, LM and AD are the Ljung–Box test for the presence of autocorrelation,
the Engle test for the presence of the ARCH effect and the Anderson–Darling goodness of fit test, respectively.

* Indicates that the null hypothesis was rejected at the 0.05 level.
as a measure of the model’s quality. We also performed
the Rivers and Vuong (2002) (RV) test, which allowed
us to verify the hypothesis that the likelihood functions
of two non-nested competing models are asymptotically
equivalent. The RV test is a generalization of the Vuong
tests (1989), which can be applied to nonlinear models
of time series. According to the likelihood function based
solely on closing prices, the S&GARCH-NIG-HLCmodel was
inferior to themodels based solely on closing prices for the
S&P 500 and FTSE 100 indices, but therewere no significant
differences between the competing models for the WIG20
index. However, when the likelihood function was based
on low, high and closing prices (ln L2), the S&GARCH-
NIG-HLC model performed significantly better than the
S&GARCH-NIG model for all of the indices (it was not
possible to compare the GARCH-skewed Student-t model
directly).

The evaluation of the quality of the models was based
on statistical tests for closing prices: the Ljung–Box test
for the presence of autocorrelation, the Engle test for the
presence of the ARCH effect, and the Anderson–Darling
test for the goodness of fit. The application of low and
high prices to the estimation of parameters degraded the
quality of the GARCH model evaluations from the point of
view of the statistical properties of the errors formulated
for closing prices (a weak ARCH effect for the FTSE 100
and WIG20 indices, and a worse fit of the conditional
distribution for the three indices). This could be expected,
and does notmean that themodelwas of low quality. Thus,
the models should be evaluated based on a broader set
of information related to low, high and closing prices, but
no appropriate procedures or tests are available at present
(we leave this for future research).

The application of low and high prices to estimation
changed the estimates of the GARCH model parameters
significantly. Specifically, the estimate of the parameterω1
increased and the estimate of the parameter ξ1 decreased
compared with the models where the parameters were
estimated based on closing prices. This is important
in terms of both the modelling and forecasting of the
volatility of returns, because shocks in the previous period
have a stronger impact on the current volatility, and thus,
the model using parameters estimated based on low, high
and closing prices has a faster response to changingmarket
conditions. One of the greatest weaknesses of the GARCH
model using parameters estimated based on closing prices
is citedwidely as being its slow response to abrupt changes
in the market (e.g., Andersen et al., 2003; Hansen et al.,
2012). Thus, it seems that the use of low and high prices
for estimating parameters yields estimates that are closer
to the true parameters.

It iswell known that the extreme values connectedwith
turbulent periods have significant effects on the estimation
results. Therefore, it is of interest to compare the estimated
parameters of the GARCH models during the tranquil
period with the results obtained during the financial crisis
in the USA. The latter estimates were obtained for a
turbulent period of the same length as the tranquil period,
namely from January 2, 2007, to December 31, 2009. The
estimated results are presented in Table 2.

The estimate of the parameter ω1 increased during the
turbulent period relative to the tranquil period before the
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Table 3
Summary statistics of the daily returns for tranquil and turbulent periods.

Index Number of
observations

Mean ·

103
Minimum Maximum Standard

deviation
Skewness Excess kurtosis

The tranquil period: year 2007

S&P 500 251 0.138 −0.035 0.029 0.010 −0.494* 1.448*

FTSE 100 253 0.147 −0.042 0.034 0.011 −0.366* 1.537*

WIG20 249 0.203 −0.055 0.045 0.015 0.000 0.636*

The turbulent period: year 2008

S&P 500 253 −1.921 −0.095 0.110 0.026 −0.033 3.672*

FTSE 100 254 −1.480 −0.093 0.094 0.024 0.126 3.383*

WIG20 251 −2.622 −0.084 0.081 0.024 −0.210 1.445*

The transition period: year 2009

Athex Composite Share Price 248 0.832 −0.064 0.069 0.021 −0.202 0.648*

The turbulent period: year 2011

Athex Composite Share Price 251 −2.914 −0.072 0.134 0.023 0.969* 4.773*

* Indicates that the null hypothesis (the skewness or excess kurtosis is equal to zero) was rejected at the 0.05 level.
crisis for all of themodels. The estimate of the parameter ξ1
decreased and the sumof the estimates of parametersω1+

ξ1 increased (as expected, it was very close to one) during
the financial crisis in almost all cases. The greatest changes
were for the S&GARCH-NIG-HLC model. The parameters
estimated for the two additional periods of 2005–2007 and
2006–2008 are given in Tables A.1 and A.2 in the Appendix,
which show how the estimates of the parameters reacted
to the period of turmoil.

5. Forecasting volatility

The main purpose of this empirical study is to com-
pare the forecasting performance of the GARCH model es-
timated based on low, high and closing prices with that of
themodel based only on closing prices in the turbulent pe-
riod, i.e., the period with large declines in stock prices and
very high volatilities. The forecasting performances of the
models were evaluated in the period of turmoil, i.e., for the
whole year of 2008, which was when the worst phase of
the financial crisis occurred in the USA and the turbulence
spread to the European financialmarkets. The stock indices
analysed, i.e., S&P 500, FTSE 100 and WIG20, lost 38.49%,
31.33% and 48.21% of their values in 2008, respectively. The
choice of this period was subjective, but results similar to
those presented in the remainder of this study were ob-
tained when slightly different turbulent periods were as-
sumed. For comparison, the forecasts were also evaluated
for the preceding usual period of a similar length (in this
case, 2007). In 2007, the S&P 500, FTSE 100 andWIG20 in-
dices increased by 3.53%, 3.80% and 5.19%, respectively. It
should be noted that the choice of period is not important
because no significant conclusions are drawn for this pe-
riod.

The descriptive statistics for the daily logarithmic re-
turns presented in Table 3 confirm the significant differ-
ences in returns between 2007 and 2008. The variability of
returns, measured by the standard deviation, increased in
the year 2008by about 156%, 114% and61% for the S&P500,
FTSE 100 and WIG20 indices, respectively. The results for
the Athex Composite Share Price Index, which is analyzed
in Section 6, are also given in Table 3.

Out-of sample one-day-ahead forecasts of the variance
were formulated based on the models, where the parame-
ters were estimated separately each day based on a rolling
samplewith a fixed size of 757 (approximately a three-year
period) for the years 2007 and 2008. As a proxy of the daily
volatility for the evaluation of forecasts, we employed the
sum of the squared intraday returns (the so-called realized
variance). One significant problem when using such data
is the choice of the appropriate frequency of observations
(see, e.g. Pigorsch, Pigorsch, & Popov, 2012). Therefore, the
realized volatility was estimated in different variants using
5, 10, 15, 20, 30 and 60min returns (to save space, only the
results for 15 min returns are presented below; however,
the other frequencies were not significantly different). The
forecasts of the models were evaluated based on two pri-
marymeasures, namely themean squared error (MSE) and
the mean absolute error (MAE). The MSE is the criterion
that is used most frequently in empirical studies, and is
also robust to the use of a noisy volatility proxy (it yields
the same ranking of competing forecasts using an unbiased
volatility proxy, see Hansen & Lunde, 2006a; Patton, 2011).
However, the MAE is less sensitive to outliers. The results
of the study when the ex-post realized variances were es-
timated as the sum of the squared 15-min returns are pre-
sented in Table 4.

In order to evaluate the statistical significance of the
results, two different tests were applied, the test of
superior predictive ability (SPA) of Hansen (2005), and
the model confidence set (MCS) of Hansen, Lunde, and
Nason (2011). In the first approach, alternative forecasts
are compared with a benchmark forecast. In this study,
we performed a pairwise comparison, and the results are
presented with respect to the S&GARCH-NIG model based
on closing prices used as a benchmark. In contrast, the
MCS procedure does not require the specification of a
benchmark model. The MCS contains the best forecasting
models with a certain probability.

According to the results of the SPA tests for the MSE
and MAE criteria (see the outcomes in Table 4, noting
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Table 4
Evaluation of the volatility forecasts: the MSE and MAE criteria. The realized variance is used as a proxy for the volatility.

Model The tranquil period: year 2007 The turbulent period: year 2008
MSE SPA MCS MAE SPA MCS MSE SPA MCS MAE SPA MCS

p-value p-value p-value p-value p-value p-value p-value p-value

S&P 500

Model 1 0.083 – 0.262* 0.532 – 0.164* 5.628 – 0.002 4.143 – 0.000
Model 2 0.092 0.859 0.218* 0.496 0.083 1.000* 3.303 0.003 1.000* 2.610 0.000 1.000*

Model 3 0.082 0.141 1.000* 0.537 0.961 0.163* 5.798 0.894 0.002 4.204 0.929 0.000

FTSE 100

Model 1 0.118 – 0.851* 0.574 – 0.310* 5.754 – 0.094 3.340 – 0.044
Model 2 0.119 0.567 0.851* 0.546 0.143 1.000* 4.777 0.040 1.000* 2.824 0.026 1.000*

Model 3 0.117 0.077 1.000* 0.573 0.213 0.310* 5.590 0.015 0.098 3.288 0.005 0.051

WIG20

Model 1 0.427 – 1.000* 1.093 – 0.929* 6.289 – 0.024 3.792 – 0.004
Model 2 0.465 0.917 0.101* 1.086 0.418 1.000* 5.290 0.029 1.000* 3.289 0.004 1.000*

Model 3 0.429 0.718 1.666* 1.089 0.105 0.929* 6.221 0.085 0.024 3.742 0.005 0.004
Model 1 is the S&GARCH-NIG model for closing prices, Model 2 is the S&GARCH-NIG-HLC model, and Model 3 is the GARCH-skewed Student-t model. The
realized variances were estimated as the sum of squared 15-min returns. The values of the MSE and MAE are multiplied by 107 and 104 , respectively. The
SPA test is performed for pairs of models, with the S&GARCH-NIG using closing prices as a benchmark. The MCS test is performed for the three models
jointly.

* Indicates that models belong to the MCS with a confidence level of 0.90.
that the results were the same when other models were
used as benchmarks, though they are not presented here
in order to save space), there were no differences (at the
5% significance level) between the forecasts based on the
three GARCH models during the usual period. Similarly,
according to the MCS test for both the MSE and MAE
criteria, all three models belonged to the MCS and there
was no evidence to reject the null hypothesis of equal
predictive ability.

However, completely different results were obtained
for the turbulent period. The results of the SPA tests for the
MSE and MAE loss functions (see the outcomes in Table 4,
noting that the results were the same when the GARCH-
skewed Student-t model was used as the benchmark, and
therefore they are not presented here in order to save
space) indicated that the forecasts from the models where
the parameters were estimated based only on closing
prices were inferior to the forecasts from the models that
used parameters based on low, high and closing prices. The
same conclusion was obtained based on the results of the
MCS tests for both the MSE and MAE measures. Only the
S&GARCH-NIG-HLC model belonged to the MSC with 0.90
confidence, thus indicating that it is the best forecasting
model. The main conclusions of this study did not depend
on the loss function employed, and the results were the
same for both the MSE and MAE measures.

It should be noted that the forecasting errors were
significantly lower for the S&P 500 and FTSE 100 indices
than for the WIG20 index during the tranquil period,
namely the year 2007, while the sizes of the errors were
more similar during the turbulent period.

Other loss functions were also considered, but yielded
similar results. Thus, to save space, Table 5 only presents
the R2 values from the Mincer–Zarnowitz regression.

The MSE and MAE measures indicated a significant
degradation in the quality of the forecasts during the
period of turmoil (at least in terms of their absolute values).
Table 5
Evaluation of the volatility forecasts: coefficient of determination.

Model Indices
S&P 500 FTSE 100 WIG20

The tranquil period: year 2007

Model 1 0.243 0.176 0.091
Model 2 0.314 0.140 0.049
Model 3 0.252 0.183 0.089

The turbulent period: year 2008

Model 1 0.417 0.238 0.296
Model 2 0.539 0.328 0.407
Model 3 0.439 0.252 0.309

Model 1 is the S&GARCH-NIG model for closing prices, Model 2 is the
S&GARCH-NIG-HLC model, and Model 3 is the GARCH-skewed Student-
t model. The sum of the squared 15-min returns is used as a proxy for the
volatility.

Note, though, that the R2 values suggest a completely
different conclusion; however, the latter is a relative
measure and does not penalize biased forecasts. It should
be mentioned that the volatility forecasts based on the
GARCH model with parameters estimated based on low,
high and closing prices showed a huge increase in accuracy
in the turbulent period comparedwith the usual period for
all three indices.

6. Robustness check for additional proxies of volatility
and a different period of turmoil

Two different additional proxies for the daily volatil-
ity were employed in order to check the robustness of
the forecasting results: the first-order autocorrelation-
adjusted realized variance estimator and the bi-power
variation. The former is the realized variance plus twice the
sumof the products of adjacent intraday returns. Thismea-
sure is designed to capture the effect of autocorrelation
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Table 6
Evaluation of the volatility forecasts using other volatility proxies: the MSE and MAE criteria for the tranquil period (2007).

Model First-order autocorrelation-adjusted RV Bi-power variation
MSE SPA MCS MAE SPA MCS MSE SPA MCS MAE SPA MCS

p-value p-value p-value p-value p-value p-value p-value p-value

S&P 500

Model 1 0.078 – 0.441* 0.546 – 0.154* 0.045 – 0.230* 0.475 – 0.000
Model 2 0.087 0.875 0.249* 0.507 0.074 1.000* 0.038 0.110 1.000* 0.363 0.000 1.000*

Model 3 0.077 0.212 1.000* 0.549 0.882 0.154* 0.046 0.911 0.230* 0.485 0.502 0.000

FTSE 100

Model 1 0.170 – 0.654* 0.649 – 0.540* 0.121 – 0.807* 0.571 – 0.335*

Model 2 0.175 0.661 0.654* 0.632 0.241 1.000* 0.123 0.591 0.807* 0.545 0.157 1.000*

Model 3 0.168 0.059 1.000* 0.647 0.172 0.540* 0.120 0.083 1.000* 0.571 0.354 0.335*

WIG20

Model 1 0.422 – 1.000* 1.202 – 0.594* 0.401 – 1.000* 1.131 – 0.086
Model 2 0.471 0.944 0.048 1.206 0.551 0.594* 0.423 0.841 0.236* 1.066 0.044 1.000*

Model 3 0.425 0.752 0.586* 1.195 0.054 1.000* 0.401 0.572 0.939* 1.126 0.076 0.086
Model 1 is the S&GARCH-NIG model for closing prices, Model 2 is the S&GARCH-NIG-HLC model, and Model 3 is the GARCH-skewed Student-t model.
The other volatility proxies are employed for 15-min returns. The values of the MSE and MAE are multiplied by 107 and 104 , respectively. The SPA test is
performed for pairs of models, with the S&GARCH-NIG using closing prices as the benchmark. The MCS test is performed for all three models jointly.

* Indicates that models belong to the MCS with a confidence level of 0.90.
Table 7
Evaluation of volatility forecasts for other volatility proxies: the MSE and MAE criteria for the turbulent period (2008).

Model First-order autocorrelation-adjusted RV Bi-power variation
MSE SPA MCS MAE SPA MCS MSE SPA MCS MAE SPA MCS

p-value p-value p-value p-value p-value p-value p-value p-value

S&P 500

Model 1 6.657 – 0.005 4.428 – 0.000 5.618 – 0.000 4.175 – 0.000
Model 2 4.439 0.007 1.000* 2.952 0.000 1.000* 2.501 0.002 1.000* 2.302 0.000 1.000*

Model 3 6.845 0.893 0.006 4.504 0.505 0.000 6.002 0.526 0.000 4.319 0.525 0.000

FTSE 100

Model 1 7.248 – 0.228* 3.990 – 0.041 3.362 – 0.121* 3.008 – 0.051
Model 2 6.432 0.080 1.000* 3.498 0.019 1.000* 2.570 0.049 1.000* 2.500 0.033 1.000*

Model 3 7.064 0.017 0.257* 3.931 0.002 0.049 3.242 0.007 0.135* 2.963 0.008 0.054

WIG20

Model 1 7.057 – 0.049 4.043 – 0.020 6.077 – 0.028 3.740 – 0.003
Model 2 6.204 0.041 1.000* 3.611 0.010 1.000* 5.166 0.031 1.000* 3.237 0.003 1.000*

Model 3 6.976 0.085 0.049 4.002 0.016 0.021 6.014 0.087 0.028 3.688 0.004 0.004
Model 1 is the S&GARCH-NIG model for closing prices, Model 2 is the S&GARCH-NIG-HLC model, and Model 3 is the GARCH-skewed Student-t model.
The other volatility proxies are employed for 15-min returns. The values of the MSE and MAE are multiplied by 107 and 104 , respectively. The SPA test is
performed for pairs of models, with the S&GARCH-NIG using closing prices as the benchmark. The MCS test is performed for the three models jointly.

* Indicated that models belong to the MCS with a confidence level of 0.90.
in high frequency returns induced by market microstruc-
ture noise (such as the bid–ask bounce). This estimator
was studied extensively by Hansen and Lunde (2006b).
The bi-power variation of Barndorff-Nielsen and Shephard
(2004) is the scaled sum of the products of adjacent abso-
lute intraday returns. This is a jump-robust realized mea-
sure. The forecasting performance results obtained by the
GARCHmodels using these two proxies of the daily volatil-
ity are presented in Tables 6 and 7, respectively, for the
usual and turbulent periods. The differences are small com-
paredwith the results reported in Section 5. The S&GARCH-
NIG-HLC model performed better than its competitors
during the usual period for the S&P 500 andWIG20 indices
when employing the MAE criterion and the bi-power vari-
ation proxy for volatility. During the turbulent period, all
threemodels belonged to theMSCwith 0.90 confidence for
the FTSE 100 index based on the MSE measure. However,
the other results agreed with the main conclusions of the
study.

The results from this research may apply only to the
financial crisis in the USA. Thus, to check the robustness
of the forecasting results, a different period of turmoil was
considered aswell. This studywas performed for the Greek
debt crisis using the Athex Composite Share Price Index.
First, the parameters of all three models were estimated
for the turbulent period of 2010–2012. It was not possible
to estimate the parameters for the tranquil period before
the crisis, due to the overlap with the previous three-year
period of the financial crisis in the USA; this is why the
mixed period of 2009–2011 was also considered for the
comparison. The results are presented in Table 8. Themain
outcomes are similar to those obtained for the USA crisis.
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Table 8
Results estimated for the Athex Composite Share Price index during the Greek debt crisis.

Parameters The usual and turbulent periods, 2009–2011 The turbulent period, 2010–2012
Model 1 Model 2 Model 3 Model 1 Model 2 Model 3

µ · 103 −2.967 4.480 −0.819 −3.970 −0.540 −0.906
(2.441) (1.872) (0.771) (2.239) (1.790) (0.799)

ω0 · 106 17.097 20.063 16.180 30.194 21.363 29.339
(10.156) (5.966) (9.355) (13.465) (5.497) (12.900)

ω1
0.044 0.140 0.046 0.079 0.181 0.084
(0.017) (0.024) (0.017) (0.024) (0.025) (0.024)

ξ1
0.919 0.804 0.920 0.866 0.771 0.863
(0.031) (0.034) (0.029) (0.037) (0.031) (0.036)

α or ν
2.655 2.726 8.654 2.304 2.665 7.751
(0.932) (0.280) (2.471) (0.744) (0.274) (1.967)

β or ζ
0.159 −0.553 1.072 0.207 −0.056 1.090
(0.200) (0.196) (0.055) (0.170) (0.172) (0.057)

ln L1 1829 1808 1830 1766 1753 1767
RV – −2.530* 0.854 – −1.516 1.025
ln L2 7997 8134 – 7783 7872 –
RV – 4.408* – – 3.492* –
LB(7) 7.782 7.111 7.745 4.798 4.986 4.703
LM(7) 8.308 9.527 8.651 2.901 3.750 3.245
AD 0.381 8.680* 0.382 0.294 6.921* 0.283

Model 1 is the S&GARCH-NIG model for closing prices, Model 2 is the S&GARCH-NIG-HLC model, and Model 3 is the GARCH-skewed Student-t model.
Standard errors are reported in parentheses. The parameters ν and ζ represent the degrees of freedom and the asymmetry of the skewed Student-t
distribution, respectively. ln L1 and ln L2 are the logarithms of the likelihood function based solely on closing prices, and based on low, high and closing
prices, respectively. RV is the Rivers-Vuong test for model selection, where comparisons are made using the S&GARCH-NIG model with the parameters
estimated based only on closing prices as the benchmark. LB, LM and AD are the Ljung–Box test for the presence of autocorrelation, the Engle test for the
presence of the ARCH effect and the Anderson–Darling goodness of fit test, respectively.

* Indicates that the null hypothesis was rejected at the 0.05 level.
Table 9
Evaluation of the volatility forecasts for different volatility proxies and the MSE and MAE criteria for the Athex Composite Share Price index during the
transition and turbulent periods of the Greek debt crisis.

Model The transition period: year 2009 The turbulent period: year 2011
MSE SPA MCS MAE SPA MCS MSE SPA MCS MAE SPA MCS

p-value p-value p-value p-value p-value p-value p-value p-value

Realized variance

Model 1 1.142 – 0.102* 2.453 – 0.014 3.532 – 0.029 3.237 – 0.000
Model 2 0.890 0.058 1.000* 2.058 0.011 1.000* 3.235 0.027 1.000* 2.477 0.000 1.000*

Model 3 1.111 0.021 0.112* 2.390 0.000 0.023 3.542 0.880 0.029 3.247 0.941 0.000

First-order autocorrelation-adjusted RV

Model 1 1.461 – 0.186* 2.740 – 0.013 4.777 – 0.113* 3.510 – 0.000
Model 2 1.250 0.096 1.000* 2.353 0.011 1.000* 4.564 0.065 1.000* 2.982 0.000 1.000*

Model 3 1.444 0.154 0.186* 2.681 0.001 0.020 4.784 0.794 0.113* 3.516 0.860 0.000

Bi-power variation

Model 1 1.182 – 0.034 2.569 – 0.005 1.507 – 0.000 2.839 – 0.000
Model 2 0.817 0.022 1.000* 2.085 0.003 1.000* 0.832 0.002 1.000* 1.809 0.000 1.000*

Model 3 1.128 0.003 0.043 2.475 0.000 0.010 1.531 0.054 0.000 2.853 0.498 0.000
Model 1 is the S&GARCH-NIG model for closing prices, Model 2 is the S&GARCH-NIG-HLC model, and Model 3 is the GARCH-skewed Student-t model.
Volatility proxies are employed for 15-min returns. The values of the MSE and MAE are multiplied by 107 and 104 , respectively. The SPA test is performed
for pairs of models, with the S&GARCH-NIG using closing prices as the benchmark. The MCS test is performed for the three models jointly.

* Indicates that models belong to the MCS with a confidence level of 0.90.
The analysis of the forecasting performance was per-
formed for the year 2011, i.e., at the worst stage of the
crisis, and for the year 2009, for comparison. The year
2010 was omitted deliberately because it was the begin-
ning of the debt crisis (the results for the year 2010 are
presented in Table A.3 in the Appendix). The main stock
index lost more than half of its value (51.88%) in 2011, af-
ter increasing by 22.93% in 2009. The descriptive statis-
tics of the index returns are presented in Table 3, and the
forecasting performance results are given in Table 9. The
year 2009 was not a tranquil period, but the transition pe-
riod between the financial crisis in the USA and the debt
crisis in Greece. Despite the growth in the market, the
volatility of returns was very high in 2009 (only slightly
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lower than that in 2011), and the forecasting superiority of
the S&GARCH-NIG-HLC model was also noticeable in that
period.

The R2 values obtained from the Mincer–Zarnowitz
regression were 0.087, 0.082 and 0.082 in the year 2009,
and 0.051, 0.091 and 0.052 in the year 2011, for the
S&GARCH-NIG based on closing prices, S&GARCH-NIG-HLC
and GARCH-skewed Student-t models, respectively.

Thus, the main conclusion of the study remains un-
changed, and the results indicate that, during the turbu-
lent period, the forecasts obtained using the models with
parameters estimated based only on closing prices were
inferior to those produced by the models where the pa-
rameters were estimated based on low, high and closing
prices.

7. Conclusions

Forecasting the volatility of financial asset returns is a
much easier task than forecasting financial asset returns.
Nevertheless, forecasting the variance of returns during
the turbulent periods connected with financial crises is a
difficult task, and traditional volatility models do not cope
well with this problem. The GARCH model, which is used
widely in empirical studies, is not well suited to situations
with rapid changes in the level of volatility. This is due in
part to the fact that its formulation and the estimation of its
parameters are based solely on daily closing prices, which
do not always provide satisfactory information about the
volatility of returns. By contrast, much more information
can be obtained through the use of daily minimum and
maximum prices, which are available widely.
In this study, we have proposed a modification of
the GARCH model whereby the parameters are estimated
based on the daily low andhigh prices aswell as the closing
prices. We have also presented an empirical application
to two stock indices from developed markets, i.e., S&P
500 and FTSE 100, and two stock indices from emerging
markets, i.e., the Polish WIG20 index and the Greek Athex
Composite Share Price Index. We used the additional
information on low and high prices in the derivation of the
likelihood function of the GARCH model, which improved
the volatility estimation and increased the accuracy of the
volatility forecasts for the models in the turbulent period
compared with using only closing prices. This result was
robust to both the forecast evaluation criterion employed
and the proxy used for the daily volatility. In future, this
method could be extended to other GARCHmodels, as well
as to other volatilitymodels such as the stochastic volatility
model.
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Appendix

See Tables A.1–A.3.
Table A.1
Estimates obtained for selected stock indices over the period 2005–2007.

Parameters S&P 500 FTSE 100 WIG20
Model 1 Model 2 Model 3 Model 1 Model 2 Model 3 Model 1 Model 2 Model 3

µ · 103 1.541 3.262 0.404 1.642 4.770 0.623 5.650 9.421 1.077
(0.544) (0.453) (0.242) (0.796) (0.426) (0.231) (2.425) (1.057) (0.487)

ω0 · 106 1.334 1.592 1.167 2.916 1.943 2.512 4.618 5.901 4.487
(0.740) (0.575) (0.690) (1.171) (0.621) (1.031) (2.693) (2.395) (2.792)

ω1
0.067 0.133 0.069 0.138 0.188 0.129 0.053 0.106 0.044
(0.019) (0.022) (0.018) (0.033) (0.028) (0.030) (0.018) (0.020) (0.017)

ξ1
0.912 0.840 0.913 0.815 0.785 0.830 0.924 0.857 0.934
(0.026) (0.027) (0.025) (0.044) (0.032) (0.040) (0.026) (0.029) (0.026)

α or ν
1.703 2.095 6.791 4.798 2.208 22.575 5.276 2.805 11.218
(0.525) (0.197) (1.681) (2.317) (0.199) (16.800) (2.647) (0.276) (4.530)

β or ζ
−0.212 −0.734 0.892 −0.324 −1.054 0.832 −0.822 −1.221 0.962
(0.124) (0.131) (0.042) (0.259) (0.127) (0.045) (0.573) (0.181) (0.051)

ln L1 2661 2641 2662 2658 2620 2663 2172 2153 2169
RV – −2.426* 0.795 – −3.161* 1.799 – −2.685*

−1.136
ln L2 10539 10612 – 10422 10570 – 8914 9048 –
RV – 3.507* – – 4.243* – – 4.894* –
LB(7) 10.865 11.416 10.636 7.526 2.731 6.829 8.532 8.140 7.962
LM(7) 4.468 4.442 4.728 5.188 27.091* 4.658 11.689 10.238 11.462
AD 0.564 5.549* 0.748 0.652 4.919* 0.640 0.574 5.499* 0.553

Model 1 is the S&GARCH-NIG model for closing prices, Model 2 is the S&GARCH-NIG-HLC model, and Model 3 is the GARCH-skewed Student-t model.
Standard errors are reported in parentheses. The parameters ν and ζ represent the degrees of freedom and the asymmetry of the skewed Student-t
distribution, respectively. ln L1 and ln L2 are the logarithms of the likelihood function based solely on closing prices, and based on low, high and closing
prices, respectively. RV is the Rivers-Vuong test for model selection, where comparisons are made using the S&GARCH-NIG model with parameters
estimated based only on closing prices as the benchmark. LB, LM and AD are the Ljung–Box test for the presence of autocorrelation, the Engle test for
the presence of the ARCH effect and the Anderson–Darling goodness of fit test, respectively.

* Indicates that the null hypothesis was rejected at the 0.05 level.
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Table A.2
Results estimated for selected stock indices over the period 2006–2008.

Parameters S&P 500 FTSE 100 WIG 20
Model 1 Model 2 Model 3 Model 1 Model 2 Model 3 Model 1 Model 2 Model 3

µ · 103 1.433 2.776 0.402 1.165 4.362 0.392 2.092 8.396 −0.008
(0.435) (0.413) (0.291) (0.683) (0.520) (0.312) (0.435) (1.290) (0.590)

ω0 · 106 0.872 1.594 0.818 2.476 2.378 2.297 7.960 9.531 7.905
(0.630) (0.678) (0.616) (1.155) (0.885) (1.080) (3.932) (2.758) (1.266)

ω1
0.108 0.270 0.111 0.151 0.309 0.144 0.065 0.133 0.064
(0.022) (0.034) (0.023) (0.031) (0.037) (0.029) (0.017) (0.020) (0.017)

ξ1
0.898 0.759 0.898 0.843 0.703 0.849 0.911 0.827 0.912
(0.020) (0.030) (0.020) (0.030) (0.033) (0.028) (0.024) (0.026) (0.023)

α or ν
1.075 1.570 4.889 2.818 2.220 9.870 4.736 2.672 14.011
(0.293) (0.141) (1.029) (1.034) (0.209) (3.305) (2.342) (0.260) (6.832)

β or ζ
−0.135 −0.481 0.904 −0.139 −0.795 0.896 −0.279 −1.008 0.941
(0.067) (0.087) (0.041) (0.130) (0.110) (0.048) (0.320) (0.172) (0.049)

ln L1 2382 2364 2381 2349 2335 2351 1991 1972 1991
RV – −1.602 −0.570 – −1.328 0.848 – −2.325* 0.116
ln L2 9724 9811 – 9511 9642 – 8355 8547 –
RV – 3.467* – – 3.589* – – 5.366* –
LB(7) 14.533* 17.297* 13.353 5.985 4.364 5.485 13.132 11.548 13.247
LM(7) 2.773 1.130 3.113 10.692 12.983 10.230 11.968 15.645* 12.941
AD 0.586 5.991* 1.439 0.796 4.505* 1.314 0.273 7.197* 0.434

Model 1 is the S&GARCH-NIG model for closing prices, Model 2 is the S&GARCH-NIG-HLC model, and Model 3 is the GARCH-skewed Student-t model.
Standard errors are reported in parentheses. The parameters ν and ζ represent the degrees of freedom and the asymmetry of the skewed Student-t
distribution, respectively. ln L1 and ln L2 are the logarithms of the likelihood function based solely on closing prices, and based on low, high and closing
prices, respectively. RV is the Rivers-Vuong test for model selection, where comparisons are made using the S&GARCH-NIG model with parameters
estimated based only on closing prices as the benchmark. LB, LM and AD are the Ljung–Box test for the presence of autocorrelation, the Engle test for
the presence of the ARCH effect, and the Anderson–Darling goodness of fit test, respectively.

* Indicates that the null hypothesis is rejected at the 0.05 level.
Table A.3
Evaluation of the volatility forecasts for different volatility proxies, and
the MSE and MAE criteria for the Athex Composite Share Price index at
the beginning of the Greek debt crisis: year 2010.

Model MSE MAE

Realized variance

Model 1 2.360 3.026
Model 2 1.599 2.090
Model 3 2.334 3.000

First-order autocorrelation-adjusted RV

Model 1 2.692 3.247
Model 2 2.146 2.453
Model 3 2.665 3.228

Bi-power variation

Model 1 1.723 2.945
Model 2 0.641 1.859
Model 3 1.706 2.924

Model 1 is the S&GARCH-NIG model for closing prices, Model 2 is the
S&GARCH-NIG-HLC model, and Model 3 is the GARCH-skewed Student-
t model. Volatility proxies for 15-min returns were employed. The values
of the MSE and MAE were multiplied by 107 and 104 , respectively.
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