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A B S T R A C T

Models for variances and covariances of asset returns are crucial in risk management and
asset allocation. Traditionally, these models were based on daily returns. Daily opening, high,
low and closing (OHLC) prices have been sometimes used in multivariate volatility models
for variances, but not for correlations. We therefore suggest a new version of the Dynamic
Conditional Correlation (DCC) model wherein information from daily OHLC prices is utilized in
both variance and correlation equations. The model is evaluated for two datasets: five exchange
traded funds and five currencies. The results show that in terms of conditional covariance matrix
estimates and forecasts the proposed model significantly outperforms, not only the standard DCC
model, but also models that incorporate OHLC prices only in the variance equation.

1. Introduction

Risk assessment is an integral part of practically all decision-making. In finance, the most important source of risk is uncertainty
bout asset return. Estimation and forecasting of time-varying covariances of asset returns play a crucial role in asset allocation
nd risk management (Carroll et al., 2017; Engle et al., 2019; Harris et al., 2017). Most volatility models applied in finance are
ased only on closing prices. Meanwhile, daily opening, high and low prices are easily available together with daily closing prices
or most financial assets. These prices can be used to construct precise estimates of volatility (Parkinson, 1980; Garman and Klass,
980; Molnár, 2012), and these estimates have been used in several studies, e.g. Mixon (2007), Karanasos and Kartsaklas (2009)
nd Bjursell et al. (2010).

Opening, high, low and closing (OHLC) prices have been particularly useful in the construction of volatility models, where
hey contribute to more accurate estimates and forecasts of variances (see e.g. Chou, 2005; Chen et al., 2008; Hung et al., 2013;
iszeder and Perczak, 2016; Molnár, 2016; Wu and Hou, 2020) and value-at-risk measures (see, e.g. Fiszeder et al., 2019; Meng
nd Taylor, 2020). Moreover, volatility forecasts from models based on daily OHLC prices are as good as volatility forecasts from
odels based on high-frequency data, except for short-term forecasts (Lyócsa et al., 2021). The application of such prices also has

ignificant economic consequences (Chou and Liu, 2010; Wu and Liang, 2011). A short review of range-based models can be found
n Petropoulos et al. (2022).

OHLC prices can also be applied to the multivariate volatility models. They can be used in two different ways. In the
irst approach, range, i.e., the difference between high and low prices, is used directly for volatility modeling. This group
f applications is very wide and contains many different parameterizations of models like: range-based multivariate stochastic
olatility (Tims and Mahieu, 2006), range-based DCC (Chou et al., 2009), double smooth transition conditional correlation CARR
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(Chou and Cai, 2009), multivariate range-based volatility models with dynamic copulas (Chiang and Wang, 2011; Wu and Liang,
2011), return and range heterogeneous general asymmetric DCC (Asai, 2013), range-based Markov-switching DCC (Su and Wu,
2014), DCC-range-GARCH (Fiszeder et al., 2019), IDR-DCC-NL (De Nard et al., 2021). Most of these multivariate models are
constructed based on the univariate range-based volatility models. In the second approach, ranges are used not only to model
volatility directly but also relations between assets. This group is very narrow and contains only three models: multivariate CARR
(Fernandes et al., 2005), BEKK-HL (Fiszeder, 2018), co-range DCC (Fiszeder and Fałdziński, 2019). In all these models the estimator
of covariance is based on the transformed formula for the variance of the sum of two random variables (this idea was suggested by
Brunetti and Lildholdt (2002) and Brandt and Diebold (2006) but they did not apply it in any multivariate model). Models which
belong to the first group also describe dependence between financial instruments but do not use estimators of covariance based on
OHLC prices. For this reason, information about OHLC prices is used comprehensively only in the second approach.

Unfortunately, the possibilities of the usage of the existing volatility models with estimators of covariance based on OHLC prices
are very limited because they require that the range of a portfolio return is given. It can be calculated only in some particular
cases, for example, when cross rates of foreign exchange rates are given or when tick-by-tick data are available (see Fiszeder and
Fałdziński, 2019).

This study has three main contributions. The first one is a proposition of the DCC model based on OHLC prices (denoted by
DCC-OHLC). We use the range-based univariate volatility model range-GARCH (RGARCH) of Molnár (2016) instead of the GARCH
model used in the first stage of estimation to describe conditional variances. However, at the same time, the correlation estimator
of Popov (2016) based on OHLC prices is applied in the dynamic conditional correlation (DCC) model (Engle, 2002; Tse and Tsui,
2002) in the second stage of estimation. It means that we use OHLC prices directly, not only for the estimation of variances, but
also for correlations of returns. To the best of our knowledge, the proposed model is the first multivariate volatility model with the
correlation estimator based on OHLC prices that can be applied to any assets for which such daily prices are available.

The second contribution is to demonstrate that the use of OHLC prices in the formulation of the DCC model can improve the
estimation of the covariance matrix of returns, which leads to increased accuracy of the covariance matrix forecasts, compared with
the standard DCC model based on closing prices.

Third, we show that covariance matrix forecasts based on the proposed model are more accurate than those obtained from two
competing range-based multivariate models, i.e., the range-based DCC model of Chou et al. (2009) and the DCC-RGARCH model of
Fiszeder et al. (2019). The superiority of the DCC-OHLC model results from the application of the estimator of correlation based on
OHLC prices in the second stage of estimation.

The rest of the paper is organized in the following way. Section 2 provides a description of the applied models. In Section 3 the
performance of the model is compared with the three other DCC models: standard DCC, range-based DCC and DCC-RGARCH for
five selected exchange-traded funds: SPDR Portfolio S&P 500 Growth, iShares Core U.S. Aggregate Bond, iShares U.S. Real Estate,
United States Oil Fund, SPDR Gold Shares and five exchange rates: euro (EUR), Japanese yen (JPY), British pound (GBP), Australian
dollar (AUD), Canadian dollar (CAD) against the U.S. dollar (USD). Section 4 provides conclusions.

2. Theoretical background

In the paper, we introduce the DCC-OHLC model and compare it with three competing multivariate GARCH models: the DCC
model of Engle (2002), the range-based DCC model of Chou et al. (2009) and the DCC-RGARCH model of Fiszeder et al. (2019). All
three competing models are very similar in their correlation part but differ in their specification for univariate conditional variances.
The first DCC model is based on the GARCH model of Bollerslev (1986), the range-based DCC model is formulated on the CARR
model of Chou (2005) while the DCC-RGARCH model is based on the RGARCH model of Molnár (2016). In the following sections,
we present the Popov correlation estimator and the competing DCC models.

2.1. Popov correlation estimator

Popov (2016) introduced the correlation estimator based on OHLC prices as a modification of the Rogers–Zhou estimator (Rogers
and Zhou, 2008). It is based on the concept of the balanced excess return, which is the difference of upper and lower wicks in the
Japanese candlestick representation of OHLC prices (see e.g. Nison, 1994).

Following Popov (2016) we assume without loss of generality that the opening price is normalized to one, i.e., the logarithm of
the price is zero. Let 𝐻𝑖𝑡, 𝐿𝑖𝑡, 𝐶𝑖𝑡 (𝑖 = 1, 2 and means the number of the series) be the logarithm of daily high, low and closing prices
espectively. Due to normalization, 𝐻𝑖𝑡, 𝐿𝑖𝑡, 𝐶𝑖𝑡 can be treated as daily high, low and closing logarithmic returns calculated relative
o the opening price. Upper and lower wicks of a candlestick can be written respectively as:

𝑤𝑢,𝑖𝑡 = 𝐻𝑖𝑡 − max(0, 𝐶𝑖𝑡) and 𝑤𝑙,𝑖𝑡 = −(𝐿𝑖𝑡 − min(0, 𝐶𝑖𝑡)). (1)

he balanced excess return is given as:

𝑊𝑖𝑡 = 𝑤𝑢,𝑖𝑡 −𝑤𝑙,𝑖𝑡 = 𝐻𝑖𝑡 − max(0, 𝐶𝑖𝑡) + 𝐿𝑖𝑡 − min(0, 𝐶𝑖𝑡) = 𝐻𝑖𝑡 + 𝐿𝑖𝑡 − 𝐶𝑖𝑡. (2)

The correlation estimator of Popov (2016) can be presented as:

�̂� = 0.5
(

�̂� + 1.1958�̂� − 0.1958�̂�3
)

, (3)
𝑃 𝜇𝐶 𝜇𝑊 𝜇𝑊
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where �̂�𝜇𝐶 =
∑𝑛𝑜
𝑡=1 𝐶1𝑡𝐶2𝑡

√

∑𝑛𝑜
𝑡=1 𝐶

2
1𝑡𝐶

2
2𝑡

, �̂�𝜇𝑊 =
∑𝑛𝑜
𝑡=1𝑊1𝑡𝑊2𝑡

√

∑𝑛𝑜
𝑡=1𝑊

2
1𝑡
∑𝑛𝑜
𝑡=1𝑊

2
2𝑡

, the subscript 𝜇 in the coefficients �̂�𝜇𝐶 and �̂�𝜇𝑊 indicates that the estimator is

based on the assumed zero means, 𝑛𝑜 is the number of observations used to estimate the coefficient.
Due to the approximation, the Popov estimator is not consistent, however, it is a minor issue. Firstly, for small to medium-sized

samples, the contribution of the approximation error is negligible. The difference between the true value and the approximation,
evaluated numerically on a fine grid, is not larger than 0.001554991 in absolute value. Secondly, a consistent estimator can be
obtained using the true correction function. Such estimator is given as:

�̂�𝑃𝑔 = 0.5
[

�̂�𝐶 + 𝑔−1(�̂�𝜇𝑊 )
]

, (4)

where 𝑔(𝜌) = 1
3−4 ln 2 [2𝑓 (𝜌) − 2𝑓 (−𝜌) − 𝜌], 𝑓 (𝜌) = cos 𝛼 ∫ ∞

0
cosh 𝜈𝛼
sinh 𝜈𝜋∕2 tanh 𝜈𝛾𝑑𝜈, 𝜌 = sin 𝛼, 𝛼𝜖(−0.5𝜋, 0.5𝜋) and 2𝛾 = 𝛼 + 0.5𝜋.

The function 𝑔−1 is not available in a closed form and its values need to be computed numerically.
Popov (2016) demonstrated that his estimator is asymptotically normal. In a simulation study, he analyzed the properties of the

stimator under the framework of the bivariate standard Brownian motion and showed that for small samples it has a downside
ias and for reasonably-sized samples it is nearly unbiased. This result is in line with expectations because the Popov estimator can
e considered as a weighted average of two Pearson-type correlation estimators, and it is well-known that the Pearson correlation
stimator is biased of order 𝑂(1∕𝑛). The most important thing, however, is that the Popov estimator is significantly more efficient
han the Pearson correlation estimator with efficiency gains of around 65%. It is also more efficient than the Rogers–Zhou correlation
stimator, except for the vicinity of zero correlation. In this case efficiency gains are increasing with the increasing absolute value
f the true value of correlation.

.2. The DCC model

The dynamic conditional correlation model was introduced independently by Engle (2002) and Tse and Tsui (2002). The main
ifference between these models is the formulation of the correlation matrix. In the model of Tse and Tsui, conditional correlations
re the weighted sum of past conditional correlations, whereas in the model of Engle the matrix written like the GARCH equation
s later transformed to the correlation matrix. In this paper, the model of Tse and Tsui is a base for the new model because in this
pecification the conditional correlation matrix is described directly and the Popov correlation coefficients can be easily introduced
n it. Moreover, the DCC model of Engle provides dynamic correlation estimates as a product of standardization, and not as a direct
esult of the equation governing the multivariate dynamics (see Caporin and McAleer, 2013). The DCC model of Tse and Tsui was
lso a base of the co-range DCC model (Fiszeder and Fałdziński, 2019).

The DCC(𝑃 ,𝑄)-GARCH(𝑝, 𝑞) model of Tse and Tsui (2002) can be given as:

ε𝑡||𝜓𝑡−1 ∼ 𝑁𝑜𝑟𝑚𝑎𝑙(0, 𝐜𝐨𝐯𝑡), (5)

Ξ𝑡−1 = 𝐁−1
𝑡−1𝐒𝑡−1𝐒

′
𝑡−1𝐁−1

𝑡−1, (6)

𝐜𝐨𝐫𝑡 =
(

1 −
𝑄
∑

𝑖=1
𝜁𝑖 −

𝑃
∑

𝑗=1
𝜃𝑗

)

𝐜𝐨𝐫 +
𝑄
∑

𝑖=1
𝜁𝑖Ξ𝒕−𝒊 +

𝑃
∑

𝑗=1
𝜃𝑗𝐜𝐨𝐫𝑡−𝑗 , (7)

𝐜𝐨𝐯𝑡 = 𝐃𝑡𝐜𝐨𝐫𝑡𝐃𝑡, (8)

where ε𝑡 is the N -dimensional innovation process for the conditional mean, 𝜓𝑡−1 is the set of all information available at time 𝑡− 1,
𝑁𝑜𝑟𝑚𝑎𝑙 is the conditional multivariate normal distribution, 𝐜𝐨𝐯𝑡 is the 𝑁 ×𝑁 symmetric conditional covariance matrix, Ξ𝑡−1 is the
𝑁 ×𝑁 sample estimate of the conditional correlation matrix based on recent 𝑀 standardized residuals {𝐳𝑡−1, 𝐳𝑡−2,… , 𝐳𝑡−𝑀}, 𝐳𝑡 is the
standardized 𝑁 ×1 residual vector assumed to be serially independently distributed given as 𝐳𝑡 = 𝐃−1

𝑡 ε𝑡, 𝐃𝑡 = diag(ℎ0.51𝑡 , ℎ
0.5
2𝑡 ,… , ℎ0.5𝑁𝑡),

conditional variances ℎ𝑘𝑡 (for 𝑘 = 1, 2,… , 𝑁) are described as univariate GARCH models, 𝐁𝑡−1 is the 𝑁 ×𝑁 diagonal matrix with

the 𝑘th diagonal element being
( 𝑀
∑

ℎ=1
𝑧2𝑘𝑡−ℎ

)0.5

, 𝑧𝑘𝑡 = 𝜀𝑘𝑡∕
√

ℎ𝑘𝑡, 𝐒𝑡−1 is the 𝑁 ×𝑀 matrix given as 𝐒𝑡−1 = (𝐳𝑡−1,… , 𝐳𝑡−𝑀 ), 𝐜𝐨𝐫𝑡 is the

conditional 𝑁 ×𝑁 correlation matrix of ε𝑡, 𝐜𝐨𝐫 is the unconditional sample 𝑁 ×𝑁 correlation matrix of ε𝑡 (the sample size is 𝑛).
The parameters 𝜁𝑖 (for 𝑖 = 1, 2,… , 𝑄), 𝜃𝑗 (for 𝑗 = 1, 2,… , 𝑃 ) are nonnegative and satisfy the condition ∑𝑄

𝑖=1 𝜁𝑖 +
∑𝑃
𝑗=1 𝜃𝑗 < 1.

The univariate GARCH(𝑝, 𝑞) model (introduced by Bollerslev, 1986), applied in the DCC-GARCH model, can be written as:

𝜀𝑘𝑡||𝜓𝑡−1 ∼ 𝑁𝑜𝑟𝑚𝑎𝑙(0, ℎ𝑘𝑡), 𝑘 = 1, 2,… , 𝑁, (9)

ℎ𝑘𝑡 = 𝛼𝑘0 +
𝑞
∑

𝑖=1
𝛼𝑘𝑖𝜀

2
𝑘𝑡−𝑖 +

𝑝
∑

𝑗=1
𝛽𝑘𝑗ℎ𝑘𝑡−𝑗 , (10)

where 𝜀𝑘𝑡 is the univariate innovation process for the conditional mean, 𝑁𝑜𝑟𝑚𝑎𝑙 is the conditional normal distribution, 𝛼𝑘0 > 0, 𝛼𝑘𝑖 ≥
, 𝛽𝑘𝑗 ≥ 0 (for 𝑘 = 1, 2,… , 𝑁 ; 𝑖 = 1, 2,… , 𝑞; 𝑗 = 1, 2,… , 𝑝), however, weaker conditions for non-negativity of the conditional variance
an be assumed (see Nelson and Cao, 1992). The requirement for covariance stationarity of 𝜀 is ∑𝑞 𝛼 +

∑𝑝 𝛽 < 1.
𝑘𝑡 𝑖=1 𝑘𝑖 𝑗=1 𝑘𝑗
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Denoting Ξ𝑡 = {𝜉𝑖𝑗𝑡}, the i𝑗th element of Ξ𝑡−1 is given as:

𝜉𝑖𝑗𝑡−1 =
∑𝑀
ℎ=1 𝑧𝑖𝑡−ℎ𝑧𝑗𝑡−ℎ

√

(

∑𝑀
ℎ=1 𝑧

2
𝑖𝑡−ℎ

)(

∑𝑀
ℎ=1 𝑧

2
𝑗𝑡−ℎ

)

. (11)

The positive definiteness of 𝐜𝐨𝐫𝑡 is ensured by construction if 𝐜𝐨𝐫𝑡 and Ξ𝑡 (for 𝑡 ≤ 0) and Ξ𝑡−𝑖 (for 𝑡 > 0) are positive definite. A
necessary condition for the latter to hold is 𝑀 ≥ 𝑁 .

The parameters of the DCC-GARCH model can be estimated by the QML method using a two-stage approach. The log-likelihood
function can be written as:

𝐿(Θ) = 𝐿𝑉 𝑜𝑙(Θ1) + 𝐿𝐶𝑜𝑟𝑟(Θ2
|

|

Θ1), (12)

where Θ′ = (Θ′
1,Θ′

2), Θ1 is the vector of the parameters of conditional means and variances and Θ2 is the vector of the parameters
of the correlation part of the model, 𝐿𝑉 𝑜𝑙(Θ1) represents the volatility part:

𝐿𝑉 𝑜𝑙(Θ1) = −0.5
𝑁
∑

𝑘=1

(

𝑛 ln(2𝜋) +
𝑛
∑

𝑡=1

(

𝑙𝑛(ℎ𝑘𝑡) +
𝜖2𝑘𝑡
ℎ𝑘𝑡

))

, (13)

while 𝐿𝐶𝑜𝑟𝑟(Θ2
|

|

Θ1) can be viewed as the correlation component:

𝐿𝐶𝑜𝑟𝑟(Θ2
|

|

Θ1) = −0.5
𝑛
∑

𝑡=1

(

ln |
|

𝐜𝐨𝐫𝑡|| + 𝐳′𝑡𝐜𝐨𝐫−1𝑡 𝐳𝑡 − 𝐳′𝑡𝐳𝑡
)

, (14)

where 𝑛 is the number of observations used in estimation.
In the first stage, the parameters of univariate GARCH models can be estimated separately for each of the assets (the function is

conditional on pre-sample estimates of ℎ𝑘𝑡 and 𝜖2𝑘𝑡, for 𝑡 ≤ 0; for ℎ𝑘𝑡 the sample variance of the observed data can be used and 𝜀𝑘𝑡 = 0
can be assumed) and in the second stage residuals transformed by their estimated standard deviations are applied to estimate the
parameters of the correlation part (Θ2) conditioning on the parameters estimated in the first stage (Θ̂1) and matrices 𝐜𝐨𝐫𝑡 and Ξ𝒕
for 𝑡 ≤ 0 (as 𝐜𝐨𝐫𝑡 the sample unconditional correlation matrix 𝐒 can be applied and for Ξ𝒕 zero matrix; these assumptions have no
effects on the asymptotic distribution of the QML estimator).

2.3. The DCC-CARR model

In this paper, the new DCC-OHLC model is compared not only with the DCC-GARCH model, formulated on closing prices, but
also with the range-based DCC model (introduced by Chou et al., 2009) which is formulated using low and high prices. We refer to
it as the DCC-CARR model in this paper because it is based on the CARR model. The DCC(𝑃 ,𝑄)-CARR(𝑝, 𝑞) model can be expressed
s

ε𝑡||𝜓𝑡−1 ∼ 𝑁𝑜𝑟𝑚𝑎𝑙(0, 𝐜𝐨𝐯𝑡), (15)

𝐐𝑡 =

(

1 −
𝑄
∑

𝑖=1
𝜁𝑖 −

𝑃
∑

𝑗=1
𝜃𝑗

)

𝐒 +
𝑄
∑

𝑖=1
𝜁𝑖(𝐳𝐶𝐴𝑅𝑅𝑡−𝑖 (𝐳𝐶𝐴𝑅𝑅𝑡−𝑖 )′) +

𝑃
∑

𝑗=1
𝜃𝑗𝐐𝑡−𝑗 , (16)

𝐜𝐨𝐫𝑡 = 𝐐∗−1
𝑡 𝐐𝑡𝐐∗−1

𝑡 , (17)

𝐜𝐨𝐯𝑡 = 𝐃𝑡𝐜𝐨𝐫𝑡𝐃𝑡, (18)

where 𝐳𝐶𝐴𝑅𝑅𝑡 is the standardized 𝑁 × 1 residual vector which contains the standardized residuals 𝑧CARR
𝑘𝑡 calculated from the CARR

model (Eqs. (19)–(21)) as 𝑧CARR
𝑘𝑡 = 𝜀𝑘𝑡∕𝜆∗𝑘𝑡, 𝜆

∗
𝑘𝑡 = adj𝑘𝜆𝑘𝑡 for 𝑘 = 1, 2,… , 𝑁 , where adj𝑘 =

�̄�𝑘
�̄�𝑘

, �̄�𝑘 is the unconditional standard deviation
of returns, �̄�𝑘 is the sample mean of the conditional range, 𝐒 is the unconditional 𝑁 ×𝑁 covariance matrix of 𝐳𝐶𝐴𝑅𝑅𝑡 (the sample
size is 𝑛). 𝐐∗

𝑡 is the diagonal 𝑁 ×𝑁 matrix composed of the square root of the diagonal elements of 𝐐𝑡, 𝐃𝑡 = diag
(

𝜆∗1𝑡, 𝜆
∗
2𝑡,… , 𝜆∗𝑁𝑡

)

,
the other variables are defined in the same way as in the DCC-GARCH model.

The CARR(𝑝, 𝑞) model (introduced by Chou, 2005), applied in the DCC-CARR model, can be described as:

𝑢𝑘𝑡||𝜓𝑡−1 ∼ exp
(

1, 𝜉𝑡
)

, 𝑘 = 1, 2,… , 𝑁, (19)

𝑅𝑘𝑡 = 𝜆𝑘𝑡𝑢𝑘𝑡, (20)

𝜆𝑘𝑡 = 𝛼𝑘0 +
𝑞
∑

𝑖=1
𝛼𝑘𝑖𝑅𝑘𝑡−𝑖 +

𝑝
∑

𝑗=1
𝛽𝑘𝑗𝜆𝑘𝑡−𝑗 , (21)

where 𝑅𝑘𝑡 is the price range given as 𝑅𝑘𝑡 = 𝑙𝑛
(

𝐻𝑘𝑡
)

− 𝑙𝑛
(

𝐿𝑘𝑡
)

, 𝐻𝑘𝑡 and 𝐿𝑘𝑡 are high and low prices over a fixed period (in our study
during a day), 𝜆𝑘𝑡 is the conditional mean of the range and 𝑢𝑘𝑡 is the disturbance term. The exponential distribution is a natural
choice for the conditional distribution of 𝑢𝑘𝑡 because it takes positive values. For positivity of 𝜆𝑘𝑡 and weakly stationary, similar
conditions like in the GARCH model have to be imposed.
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The parameters of the DCC-CARR model can be estimated by the quasi-maximum likelihood method using a two-stage approach.
The log-likelihood function can be written as the sum of two parts, the volatility part and the correlation part:

𝐿𝐷𝐶𝐶−𝐶𝐴𝑅𝑅(Θ) = 𝐿𝐷𝐶𝐶−𝐶𝐴𝑅𝑅𝑉 𝑜𝑙 (Θ1) + 𝐿𝐷𝐶𝐶−𝐶𝐴𝑅𝑅𝐶𝑜𝑟𝑟 (Θ2
|

|

Θ1), (22)

𝐿𝐷𝐶𝐶−𝐶𝐴𝑅𝑅𝑉 𝑜𝑙 (Θ1) = −1
2

𝑁
∑

𝑘=1

(

𝑛 ln(2𝜋) +
𝑛
∑

𝑡=1

(

2𝑙𝑛(𝜆∗𝑘𝑡) +
𝜖2𝑘𝑡
𝜆∗2𝑘𝑡

))

(23)

𝐿𝐷𝐶𝐶−𝐶𝐴𝑅𝑅𝐶𝑜𝑟𝑟 (Θ2
|

|

Θ1) = −1
2

𝑛
∑

𝑡=1

(

ln |
|

𝐜𝐨𝐫𝑡|| + (𝒛𝐶𝐴𝑅𝑅𝑡 )′𝐜𝐨𝐫−1𝑡 𝒛𝐶𝐴𝑅𝑅𝑡 − (𝒛𝐶𝐴𝑅𝑅𝑡 )′𝒛𝐶𝐴𝑅𝑅𝑡
)

. (24)

This means that in the first stage the parameters of the CARR models can be estimated separately for each of the assets (the
function is conditional on pre-sample estimates of 𝜆𝑘𝑡 and 𝑅𝑘𝑡, for 𝑡 ≤ 0; for 𝜆𝑘𝑡 the sample mean of the conditional range can be
used and 𝑅𝑘𝑡 = 0 can be assumed). The CARR model is based on a price range and describes the dynamics of the conditional mean
of a price range. That is why to estimate values of the conditional standard deviation of returns, the conditional price range has
to be scaled. In the second stage the standardized residuals 𝑧CARR

𝑘𝑡 are used to maximize Eq. (24) to estimate the parameters of the
correlation component conditioning on the parameters estimated in the first stage and matrices 𝐐𝑡 and 𝐳𝐶𝐴𝑅𝑅𝑡 (𝐳𝐶𝐴𝑅𝑅𝑡 )′ for 𝑡 ≤ 0 (as
𝑡 the sample unconditional correlation matrix 𝐒 can be applied and for 𝐳𝐶𝐴𝑅𝑅𝑡 (𝐳𝐶𝐴𝑅𝑅𝑡 )′ zero matrix).

.4. The DCC-range-GARCH model

The third benchmark to compare with our new model is the DCC-Range-GARCH model (denoted by DCC-RGARCH) introduced
y Fiszeder et al. (2019). The DCC(𝑃 ,𝑄)-RGARCH(𝑝, 𝑞) model can be presented as:

ε𝑡||𝜓𝑡−1 ∼ 𝑁𝑜𝑟𝑚𝑎𝑙(0, 𝐜𝐨𝐯𝑡), (25)

𝐐𝑡 =

(

1 −
𝑄
∑

𝑖=1
𝜁𝑖 −

𝑃
∑

𝑗=1
𝜃𝑗

)

𝐒 +
𝑄
∑

𝑖=1
𝜁𝑖(𝐳𝑅𝐺𝐴𝑅𝐶𝐻𝑡−𝑖 (𝐳𝑅𝐺𝐴𝑅𝐶𝐻𝑡−𝑖 )′) +

𝑃
∑

𝑗=1
𝜃𝑗𝐐𝑡−𝑗 , (26)

𝐜𝐨𝐫𝑡 = 𝐐∗−1
𝑡 𝐐𝑡𝐐∗−1

𝑡 , (27)

𝐜𝐨𝐯𝑡 = 𝐃𝑡𝐜𝐨𝐫𝑡𝐃𝑡, (28)

where 𝐳𝑅𝐺𝐴𝑅𝐶𝐻𝑡 is the standardized 𝑁 × 1 residual vector which contains the standardized residuals 𝑧RGARCH
𝑘𝑡 calculated from

the RGARCH model as 𝑧RGARCH
𝑘𝑡 = 𝜀𝑘𝑡∕

(

ℎ𝑅𝐺𝐴𝑅𝐶𝐻𝑘𝑡
)1∕2, conditional variances ℎ𝑅𝐺𝐴𝑅𝐶𝐻𝑘𝑡 (for 𝑘 = 1, 2,… , 𝑁) are described as

for the RGARCH model (Eqs. (29)–(30)), 𝐒 is the unconditional 𝑁 × 𝑁 covariance matrix of 𝐳𝑅𝐺𝐴𝑅𝐶𝐻𝑡 (the sample size is 𝑛),
𝐃𝑡 = diag

(

(ℎ𝑅𝐺𝐴𝑅𝐶𝐻1𝑡 )1∕2, (ℎ𝑅𝐺𝐴𝑅𝐶𝐻2𝑡 )1∕2 … , (ℎ𝑅𝐺𝐴𝑅𝐶𝐻𝑁𝑡 )1∕2
)

, the other variables are defined in the same way as in the DCC-GARCH
and DCC-CARR models.

The univariate range-GARCH(𝑝, 𝑞) (RGARCH) model (introduced by Molnár, 2016), applied in the DCC-RGARCH model, can be
written as:

𝜀𝑘𝑡||𝜓𝑡−1 ∼ 𝑁𝑜𝑟𝑚𝑎𝑙(0, ℎ𝑅𝐺𝐴𝑅𝐶𝐻𝑘𝑡 ), 𝑘 = 1, 2,… , 𝑁, (29)

ℎ𝑅𝐺𝐴𝑅𝐶𝐻𝑘𝑡 = 𝛼𝑘0 +
𝑞
∑

𝑖=1
𝛼𝑘𝑖𝜎

2
𝑘,𝑃 𝑡−𝑖 +

𝑝
∑

𝑗=1
𝛽𝑗ℎ

𝑅𝐺𝐴𝑅𝐶𝐻
𝑘𝑡−𝑗 , (30)

where 𝜎2𝑘,𝑃 𝑡 is the Parkinson estimator of variance (Parkinson, 1980) given as 𝜎2𝑘,𝑃 𝑡 = [𝑙𝑛(𝐻𝑘𝑡∕𝐿𝑘𝑡)]2∕(4 ln 2). For positivity of ℎ𝑅𝐺𝐴𝑅𝐶𝐻𝑘𝑡
and weakly stationary, similar conditions like in the GARCH model have to be imposed.

The parameters of the DCC-RGARCH model can be estimated by the quasi-maximum likelihood method using a two-stage
approach. The log-likelihood function can be written as the sum of two parts: the volatility part and the correlation part:

𝐿𝐷𝐶𝐶−𝑅𝐺𝐴𝑅𝐶𝐻 (Θ) = 𝐿𝐷𝐶𝐶−𝑅𝐺𝐴𝑅𝐶𝐻𝑉 𝑜𝑙 (Θ1) + 𝐿𝐷𝐶𝐶−𝑅𝐺𝐴𝑅𝐶𝐻𝐶𝑜𝑟𝑟 (Θ2
|

|

Θ1), (31)

𝐿𝐷𝐶𝐶−𝑅𝐺𝐴𝑅𝐶𝐻𝑉 𝑜𝑙 (Θ1) = −1
2

𝑁
∑

𝑘=1

(

𝑛 ln(2𝜋) +
𝑛
∑

𝑡=1

(

𝑙𝑛(ℎ𝑅𝐺𝐴𝑅𝐶𝐻𝑘𝑡 ) +
𝜖2𝑘𝑡

ℎ𝑅𝐺𝐴𝑅𝐶𝐻𝑘𝑡

))

(32)

𝐿𝐷𝐶𝐶−𝑅𝐺𝐴𝑅𝐶𝐻𝐶𝑜𝑟𝑟 (Θ2
|

|

Θ1) = −1
2

𝑛
∑

𝑡=1

(

ln |
|

𝐜𝐨𝐫𝑡|| + (𝒛𝑅𝐺𝐴𝑅𝐶𝐻𝑡 )′𝐜𝐨𝐫−1𝑡 𝒛𝑅𝐺𝐴𝑅𝐶𝐻𝑡 − (𝒛𝑅𝐺𝐴𝑅𝐶𝐻𝑡 )′𝒛𝑅𝐺𝐴𝑅𝐶𝐻𝑡
)

, (33)

his means that in the first stage the parameters of univariate RGARCH models can be estimated separately for each of the assets.
igh and low prices are used in the RGARCH model to calculate the Parkinson estimator, but at the same time, the estimation of its
arameters is based on closing returns. This is because the Parkinson estimator is a scaled price range and describes the variance of
eturns. The function is conditional on pre-sample estimates of ℎ𝑅𝐺𝐴𝑅𝐶𝐻𝑘𝑡 and 𝜎2𝑘,𝑃 𝑡, for 𝑡 ≤ 0. A natural choice for ℎ𝑅𝐺𝐴𝑅𝐶𝐻𝑘𝑡 is the
ample variance of the observed data and for 𝜎2𝑘,𝑃 𝑡 zero value can be taken.

In the second stage the standardized residuals 𝑧RGARCH
𝑘𝑡 are used to maximize Eq. (33) in order to estimate the parameters of

he correlation component conditioning on the parameters estimated in the first stage and matrices 𝐐𝑡 and 𝐳𝑅𝐺𝐴𝑅𝐶𝐻𝑡−𝑖 (𝐳𝑅𝐺𝐴𝑅𝐶𝐻𝑡−𝑖 )′ for
≤ 0 (as 𝐐 the sample unconditional correlation matrix 𝐒 can be applied and for 𝐳𝑅𝐺𝐴𝑅𝐶𝐻 (𝐳𝑅𝐺𝐴𝑅𝐶𝐻 )′ zero matrix).
𝑡 𝑡−𝑖 𝑡−𝑖
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2.5. DCC-OHLC model

In this section, we introduce the new formulation of the DCC model with the use of the correlation estimator based on OHLC
prices. It is based on the RGARCH model (described in Section 2.4), which is applied in the first stage of estimation and the
DCC model (described in Section 2.2) with the Popov correlation estimator (described in Section 2.1) in the second stage. The
DCC(𝑃 ,𝑄)-RGARCH(𝑝, 𝑞) model based on OHLC prices (denoted by DCC-OHLC) can be written as:

ε𝑡||𝜓𝑡−1 ∼ 𝑁𝑜𝑟𝑚𝑎𝑙(0, 𝐜𝐨𝐯𝑡), (34)

𝐜𝐨𝐫𝑡 =
(

1 −
𝑄
∑

𝑖=1
𝜁𝑖 −

𝑃
∑

𝑗=1
𝜃𝑗

)

𝐜𝐨𝐫 +
𝑄
∑

𝑖=1
𝜁𝑖Φ𝒕−𝒊 +

𝑃
∑

𝑗=1
𝜃𝑗𝐜𝐨𝐫𝑡−𝑗 , (35)

𝐜𝐨𝐯𝑡 = 𝐃𝑡𝐜𝐨𝐫𝑡𝐃𝑡, (36)

where 𝐃𝑡 = diag
(

(

ℎ𝑅𝐺𝐴𝑅𝐶𝐻1𝑡
)0.5 ,

(

ℎ𝑅𝐺𝐴𝑅𝐶𝐻2𝑡
)0.5 … ,

(

ℎ𝑅𝐺𝐴𝑅𝐶𝐻𝑁𝑡
)0.5

)

, the conditional variances ℎ𝑅𝐺𝐴𝑅𝐶𝐻𝑘𝑡 (𝑘 = 1, 2,… , 𝑁) are described

as the RGARCH model (Eqs. (29)–(30)), Φ𝑡 is the 𝑁 ×𝑁 conditional symmetric correlation matrix given as:

Φ𝑡 =

⎡

⎢

⎢

⎢

⎢

⎣

1 �̂�𝑃 𝑡,12
�̂�𝑃 𝑡,21 1

⋯ �̂�𝑃 𝑡,1𝑁
⋯ �̂�𝑃 𝑡,2𝑁

⋮ ⋮
�̂�𝑃 𝑡,𝑁1 �̂�𝑃 𝑡,𝑁2

⋮ ⋮
⋯ 1

⎤

⎥

⎥

⎥

⎥

⎦

, (37)

̂𝑃 𝑡,𝑘𝑙 (for 𝑘, 𝑙 = 1, 2,… , 𝑁) is the Popov correlation estimator between daily returns of assets k and l given in Eq. (3). The other
symbols are defined in the same way as in the DCC-GARCH model in Section 2.2.

After the preliminary tests, we estimate the Popov correlation, based on the 5 previous days (𝑛𝑜 = 5 in Eq. (3)). It is a compromise
between the size of the underestimation of the coefficient for too few observations and too slow response to current market changes
for a larger number of observations. There are two essential changes in the DCC-OHLC model in comparison to the DCC model of Tse
and Tsui (2002). Firstly, instead of the univariate GARCH model, we apply the RGARCH model which is based on the range-based
variance estimator. Secondly, we incorporate the correlation estimator based on OHLC prices in the calculation of the conditional
correlation matrix. It is worth emphasizing that the proposed model is parsimonious, and there are no additional parameters in
comparison to the standard DCC model based on returns of closing prices.

The Popov estimator is defined for open-to-close returns (see Section 2.1). The opening jump (the difference between today’s
opening price and yesterday’s closing price) can deteriorate its properties for the close-to-close returns. For that reason, we suggest
applying the DCC-OHLC model for open-to-close returns.

The parameters of the DCC-OHLC model can be estimated by the quasi-maximum likelihood method using a two-stage approach.
The log-likelihood function can be written as:

𝐿𝐷𝐶𝐶−𝑂𝐻𝐿𝐶 (Θ) = 𝐿𝐷𝐶𝐶−𝑂𝐻𝐿𝐶𝑉 𝑜𝑙
(

Θ1
)

+ 𝐿𝐷𝐶𝐶−𝑂𝐻𝐿𝐶𝐶𝑜𝑟𝑟
(

Θ2
|

|

Θ1
)

, (38)

where the volatility part is expressed as:

𝐿𝐷𝐶𝐶−𝑂𝐻𝐿𝐶𝑉 𝑜𝑙
(

Θ1
)

= −0.5
𝑁
∑

𝑘=1

(

𝑛 ln(2𝜋) +
𝑛
∑

𝑡=1

(

𝑙𝑛(ℎ𝑅𝐺𝐴𝑅𝐶𝐻𝑘𝑡 ) +
𝜖2𝑘𝑡

ℎ𝑅𝐺𝐴𝑅𝐶𝐻𝑘𝑡

))

(39)

and the correlation component has the form:

𝐿𝐷𝐶𝐶−𝑂𝐻𝐿𝐶𝐶𝑜𝑟𝑟
(

Θ2
|

|

Θ1
)

= −0.5
𝑛
∑

𝑡=1

(

ln |
|

𝐜𝐨𝐫𝑡|| + (𝒛𝑅𝐺𝐴𝑅𝐶𝐻𝑡 )′𝐜𝐨𝐫−1𝑡 𝒛𝑅𝐺𝐴𝑅𝐶𝐻𝑡 − (𝒛𝑅𝐺𝐴𝑅𝐶𝐻𝑡 )′𝒛𝑅𝐺𝐴𝑅𝐶𝐻𝑡
)

, (40)

𝐳𝑅𝐺𝐴𝑅𝐶𝐻𝑡 is the standardized 𝑁 × 1 residual vector which contains the standardized residuals 𝑧RGARCH
𝑘𝑡 calculated from the RGARCH

model as 𝑧RGARCH
𝑘𝑡 = 𝜀𝑘𝑡∕

(

ℎ𝑅𝐺𝐴𝑅𝐶𝐻𝑘𝑡
)0.5. It means that in the first stage the parameters of univariate RGARCH models can be estimated

eparately for each of the assets (the function (39) is conditional on pre-sample estimates of ℎ𝑅𝐺𝐴𝑅𝐶𝐻𝑘𝑡 and 𝜎2𝑃 𝑡, for 𝑡 ≤ 0; for ℎ𝑅𝐺𝐴𝑅𝐶𝐻𝑘𝑡
the sample variance of the observed data can be used and 𝜎2𝑃 𝑡 = 0 can be assumed). In the second stage, the standardized residuals
𝑧RGARCH
𝑘𝑡 are used to maximize Eq. (40) in order to estimate the parameters of the correlation component (Θ2) conditioning on the
arameters estimated in the first stage (Θ̂1) and matrices 𝐜𝐨𝐫𝑡 and Φ𝒕 for 𝑡 ≤ 0 (as 𝐜𝐨𝐫𝑡 the sample unconditional correlation matrix
an be applied and for Φ𝒕 zero matrix).

. Analysis of exchange-traded funds and exchange rates

We apply the proposed model and its competitors to two different sets of data: five exchange-traded funds (ETFs) and five
urrency rates. The analyzed ETFs are listed on the New York Stock Exchange Arca, namely: SPDR Portfolio S&P 500 Growth (holds
arge-capitalization growth stocks selected from the S&P 500 index), iShares Core U.S. Aggregate Bond (holds U.S. investment-
rade bonds), iShares U.S. Real Estate (holds U.S. real estate companies and REITs), United States Oil Fund (holds crude oil futures
ontracts and other oil-related contracts, predominantly short-term NYMEX futures contracts on WTI crude oil), and SPDR Gold
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Shares (holds gold bullion). The second set includes the five most heavily traded currency pairs in the Forex market, namely:
EUR/USD, USD/JPY, GBP/USD, AUD/USD, and USD/CAD.

The dynamics of the opening jump (the difference between today’s opening price and yesterday’s closing price) is arguably
different from the dynamics of the trading part of the day. As is mentioned in Section 2.5, in order to avoid the noise induced by
measuring the overnight volatility and correlation, we analyze daily open-to-close returns instead of daily close-to-close returns.
For the same reason, when we calculate realized variances and covariances, we omit the opening jump. It is a common approach
in the realized volatility literature (see e.g. Floros et al., 2020; Reschenhofer et al., 2020; Zhang et al., 2020; Gkillas et al., 2021;
Kambouroudis et al., 2021.

The percentage logarithmic returns and ranges, i.e., multiplied by 100, are used in the paper. An evaluation of the considered
models is performed for daily data spanning seven years, from January 3, 2012, to December 31, 2018. For ETFs, we exclude one
day connected with a flash crash on August 24, 2015. On that day the S&P 500 index opened at 1965.15 and within minutes fell to
a low of 1867.01, a 5% decline. During that day the market gained back most of the loss, but toward the close of trading stocks fell
again, ending the day 3.66% below the open. For currency pairs, we omit two days. The first day is the Brexit referendum which
took place on June 23, 2016. The second day is a flash crash on October 7, 2016. On that day the British pound dropped more than
6% in two minutes against the US dollar. It recovered most of the losses soon afterward. Carnero et al. (2007), Catalán and Trívez
(2007), Carnero et al. (2012), and Boudt et al. (2013) show that such outliers may cause biases on the usual maximum likelihood
estimator of the parameters of GARCH models and the estimated volatilities. If such outliers are not treated adequately, they can
lead to a considerable deterioration of the forecasting accuracy (Catalán and Trívez, 2007; Trucíos and Hotta, 2015). During such
events, all the models perform very poorly, and the inclusion of such data could bias the comparison . We leave this problem for
future studies.

The estimation of model parameters is done in Gauss and the calculation of the applied tests is performed in EViews and
OxMetrics programs using self-written codes. The SPA and MCS tests are performed using the Hansen and Lunde (2014) package
in OxMetrics.

3.1. In-sample comparison of models

We apply four1 DCC models in the analysis:
(1) The DCC model of Engle (2002), denoted by DCC-GARCH,
(2) The range-based DCC model of Chou et al. (2009), denoted by DCC-CARR,
(3) The DCC-RGARCH model of Fiszeder et al. (2019),
(4) The proposed DCC-OHLC model.
The first model is based only on closing prices, while the remaining models are multivariate range-based models. For the second

and third models, OHLC prices are used only in the first stage of estimation (i.e. for variances), while for the fourth model, these
prices are applied in both stages of estimation (i.e. for variances and covariances).

First, we compare the fit of the estimated models on the whole sample of data, i.e. from January 3, 2012, to December 31, 2018.
Mean equations for returns are very simple: each mean equation is a constant because in our data the sample return of any asset
is not dependent on its own past returns nor on the past returns of other assets. All models are with one lag for both the volatility
and correlation parts (for instance DCC(1,1)-GARCH(1,1)).

The parameters of all models are estimated using the quasi-maximum likelihood method. The results of the estimation are
presented in Tables 1–2 for ETFs and exchange rates, respectively.

It is worth noting that there are significant differences in the estimates of parameters between the considered models. The
estimates of the parameters 𝛼𝑘1 are much higher and the estimates of the parameters 𝛽𝑘1 much lower in the CARR and RGARCH

odels compared with the GARCH model. This empirical regularity has already been stated in the literature (see e.g. Chou et al.,
009; Wu and Liang, 2011; Su and Wu, 2014; Fiszeder and Fałdziński, 2019; Fiszeder et al., 2019). For modeling relations between
ssets, differences in the correlation component of the considered DCC models are more important. The estimate of the parameter
1 in the DCC-OHLC model is higher, while the estimate of the parameter 𝜃1 is lower compared with the estimates in other models.
hock in the previous period has a stronger impact on the current covariance of returns, and thus, the proposed model with the
orrelation estimator based on OHLC prices has a faster response to sudden changes in the market. A slow reply to abrupt changes
s one of the greatest deficiencies of GARCH-type models (e.g. Andersen et al., 2003; Hansen et al., 2012).

As mentioned in Section 2.3, the estimation of the parameters of the CARR model is based on a price range, which is why it
s not possible to compare the values of the likelihood function between the CARR model and the GARCH and RGARCH models
irectly. However, for the DCC-CARR it is possible to calculate the likelihood function based on the scaled conditional price range.
enceforth, it is possible to evaluate all the DCC models based on the whole likelihood function including volatility and correlation
arts. We apply the Rivers and Vuong test (Rivers and Vuong, 2002). The null hypothesis 𝐻0 is that two non-nested models are
symptotically equivalent, i.e.,

𝐻0 ∶ lim
𝑛→∞

{

�̄�1
𝑛
(

�̄�1𝑛
)

− �̄�2
𝑛
(

�̄�2𝑛
)}

= 0, (41)

1 In fact we consider five models because we additionally use the DCC model of Tse and Tsui (2002) but its results are not significantly different from results
f the DCC model of Engle that is why we do not present them.
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Table 1
The results of parameters estimation for the four DCC models for selected currency rates.

Parameters DCC-GARCH DCC-CARR DCC-RGARCH DCC-OHLC

Estimate SE Estimate SE Estimate SE Estimate SE

𝛾10 −0.007 0.013 – – −0.008 0.013 −0.008 0.013
𝛼10 0.003 0.002 0.008 0.004 0.000 0.002 0.000 0.002
𝛼11 0.038 0.014 0.063 0.013 0.051 0.019 0.051 0.019
𝛽11 0.955 0.016 0.928 0.015 0.947 0.018 0.947 0.018
𝛾20 0.000 0.026 – – −0.018 0.026 −0.018 0.026
𝛼20 0.008 0.005 0.015 0.007 0.002 0.006 0.002 0.006
𝛼21 0.064 0.013 0.120 0.016 0.091 0.020 0.091 0.020
𝛽21 0.936 0.013 0.874 0.017 0.908 0.018 0.908 0.018
𝛾30 0.032 0.017 – – 0.015 0.017 0.015 0.017
𝛼30 0.020 0.014 0.060 0.018 0.023 0.014 0.023 0.014
𝛼31 0.075 0.029 0.171 0.022 0.143 0.043 0.143 0.043
𝛽31 0.892 0.051 0.777 0.033 0.817 0.059 0.817 0.059
𝛾40 −0.006 0.003 – – −0.007 0.003 −0.007 0.003
𝛼40 0.000 0.000 0.005 0.002 0.000 0.000 0.000 0.000
𝛼41 0.036 0.016 0.087 0.014 0.048 0.022 0.048 0.022
𝛽41 0.945 0.023 0.888 0.020 0.940 0.028 0.940 0.028
𝛾50 0.039 0.013 – – 0.010 0.012 0.010 0.012
𝛼50 0.020 0.008 0.0700 0.0153 0.018 0.012 0.018 0.012
𝛼51 0.155 0.035 0.3098 0.0320 0.325 0.092 0.325 0.092
𝛽51 0.805 0.043 0.6120 0.0439 0.659 0.104 0.659 0.104
𝜁1 0.010 0.002 0.008 0.002 0.009 0.002 0.015 0.010
𝜃1 0.982 0.006 0.981 0.005 0.984 0.004 0.964 0.032

The sample period is from January 3, 2012, to December 31, 2018 (1004 observations). The 𝛾k0 parameters are constants, 𝛼k0 𝛼k1
𝛽k1 are the parameters of the univariate GARCH model, the CARR model and the RGARCH model, 𝑘 = 1, 2, 3, 4, 5 for EUR/USD,
USD/JPY, GBP/USD, AUD/USD and USD/CAD, 𝜁1, 𝜃1 are the parameters of the correlation part.

Table 2
The results of parameters estimation for the four DCC models for selected exchange-traded funds.

Parameters DCC-GARCH DCC-CARR DCC-RGARCH DCC-OHLC

Estimate SE Estimate SE Estimate SE Estimate SE

𝛾10 0.018 0.011 – – 0.021 0.012 0.021 0.012
𝛼10 0.003 0.001 0.016 0.008 0.002 0.003 0.002 0.003
𝛼11 0.050 0.011 0.128 0.021 0.085 0.032 0.085 0.032
𝛽11 0.943 0.011 0.852 0.028 0.906 0.037 0.906 0.037
𝛾20 0.019 0.010 – – 0.020 0.010 0.020 0.010
𝛼20 0.002 0.001 0.008 0.003 0.002 0.001 0.002 0.001
𝛼21 0.031 0.007 0.080 0.010 0.047 0.011 0.047 0.011
𝛽21 0.961 0.008 0.909 0.012 0.940 0.015 0.940 0.015
𝛾30 −0.008 0.013 – – −0.009 0.013 −0.009 0.013
𝛼30 0.003 0.002 0.0099 0.0041 0.005 0.002 0.005 0.002
𝛼31 0.030 0.006 0.0895 0.0110 0.050 0.013 0.050 0.013
𝛽31 0.961 0.007 0.9001 0.0129 0.931 0.017 0.931 0.017
𝛾40 0.003 0.011 – – −0.002 0.011 −0.002 0.011
𝛼40 0.001 0.001 0.009 0.004 0.001 0.001 0.001 0.001
𝛼41 0.030 0.007 0.098 0.014 0.049 0.018 0.049 0.018
𝛽41 0.966 0.009 0.891 0.016 0.943 0.021 0.943 0.021
𝛾50 0.003 0.011 – – −0.004 0.011 −0.004 0.011
𝛼50 0.001 0.001 0.006 0.003 0.001 0.002 0.001 0.002
𝛼51 0.027 0.006 0.076 0.011 0.037 0.012 0.037 0.012
𝛽51 0.968 0.007 0.916 0.013 0.955 0.015 0.955 0.015
𝜁1 0.024 0.005 0.024 0.005 0.025 0.005 0.030 0.009
𝜃1 0.953 0.012 0.951 0.013 0.950 0.013 0.946 0.021

The sample period is from January 3, 2012, to December 31, 2018 (1037 observations). The 𝛾k0 parameters are constants, 𝛼k0,
𝛼k1, 𝛽k1 are the parameters of the univariate GARCH model, the CARR model and the RGARCH model, 𝑘 = 1, 2, 3, 4, 5 for SPDR
Portfolio S&P 500 Growth, iShares Core U.S. Aggregate Bond, iShares U.S. Real Estate, United States Oil Fund, SPDR Gold Shares,
respectively, 𝜁1, 𝜃1 are the parameters of the correlation part.

where 𝑄1
𝑛
(

𝛾1𝑛
)

and 𝑄2
𝑛
(

𝛾2𝑛
)

is a selection criterion for two competing models, �̄�𝑛(𝛾𝑛) is expectation of 𝑄𝑛
(

𝛾𝑛
)

, 𝛾1𝑛 , 𝛾2𝑛 are parameter

vectors associated with the considered models, �̄�1𝑛 , �̄�2𝑛 are the so-called pseudo-true values and 𝑛 is the sample size (see Vuong, 1989

for more details).
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Table 3
The in-sample evaluation of the models and estimates of the conditional covariance matrix.

Evaluation criterion DCC-GARCH DCC-CARR DCC-RGARCH DCC-OHLC

Exchange-traded funds

Log L −5283.410 −5399.519 −5252.644 −5278.781
AIC 5.859 5.982 5.825 5.854
BIC 5.835 5.963 5.801 5.830
RV – −4.899 2.730 1.570
RV p-value – 1.000 0.003 0.058
LF 0.559 0.571 0.540 0.523
SPA p-value 0.000 0.000 0.000 0.519
MCS p-value 0.000 0.000 0.000 1.000*

Currency rates

Log L −6229.325 −6518.036 −6176.399 −6194.951
AIC 7.112 7.435 7.052 7.073
BIC 7.087 7.415 7.027 7.048
RV – −3.358 2.401 0.267
RV p-value – 1.000 0.008 0.395
LF 3.706 3.872 3.284 3.254
SPA p-value 0.003 0.000 0.001 0.594
MCS p-value 0.001 0.000 0.001 1.000*

The sample period is from January 3, 2012, to December 31, 2018 (1004 and 1037 observations for ETFs and
currency rates, respectively). Log L is the logarithm of the likelihood function, RV is the Rivers-Vuong test
statistic for model selection and comparisons are against the DCC-GARCH model, LF is the squared Frobenius
loss function for the conditional covariance matrix.
*Indicates that models belong to the model confidence set with a confidence level of 0.90, p-values for the SPA
and MCS tests are computed by the bootstrapping methodology (Hansen, 2005).

The Rivers and Vuong test is a generalization of the Vuong tests (Vuong, 1989), which can be used for nonlinear models of
time series. The values of the likelihood function and the results of the Rivers and Vuong test are given in Table 3. Additionally we
present also the Akaike information criterion (AIC) and the Bayesian information criterion (BIC).

The highest values of the likelihood function and the lowest of the AIC and BIC criteria are for the DCC-RGARCH model.
According to the Rivers and Vuong test, this model is asymptotically better than the benchmark DCC-GARCH model for both ETFs
and currency pairs. Moreover, the DCC-OHLC model is asymptotically superior to the DCC-GARCH model at the 10% significance
level for ETFs. However from the modeling and forecasting point of view, which model better describes the conditional covariance
matrix is more important. Therefore, following Laurent et al. (2013), we evaluate the models based on the squared Frobenius loss
function for the conditional covariance matrix. It can be formulated as:

LF = (1∕𝑛)
𝑛
∑

𝑡=1
Tr

[

(𝐜𝐨𝐯𝑡 − 𝐫𝐜𝐨𝐯𝑡)′(𝐜𝐨𝐯𝑡 − 𝐫𝐜𝐨𝐯𝑡)
]

, (42)

where Tr is a trace of a matrix, 𝐜𝐨𝐯𝑡 is the estimated conditional covariance matrix, 𝐫𝐜𝐨𝐯𝑡 is the realized covariance matrix calculated
from intraday data (it is used as a proxy of the real conditional covariance matrix).

Both realized variances and covariances that are in the realized covariance matrix are calculated based on 5-min returns,
excluding opening jumps. We also consider 15-min returns instead of 5-min returns and the conclusions are very similar to those
presented in this paper. In order to evaluate whether the differences between the LF loss function for the competing models are
statistically significant, we apply two tests: the test of superior predictive ability (SPA) of Hansen (2005) and the model confidence set
(MCS) test of Hansen et al. (2011). In the first test, it is checked whether each of the models considered is outperformed significantly
by any of the alternatives. In this regard, the performance of the benchmark model relative to model 𝑘 can be described as:

𝑑𝑘,𝑡 = LF𝐵,𝑡 − LF𝑘,𝑡, 𝑘 = 1,… , 𝑚, 𝑡 = 1,… , 𝑛, (43)

where LF𝐵,𝑡 and LF𝑘,𝑡 are the squared Frobenius loss function for the conditional covariance matrix (formula (42)) from the
benchmark model and model 𝑘, respectively, and 𝑚 is the number of competing models (excluding the benchmark model). The
null hypothesis of the SPA test is formulated as:

𝐻0 ∶𝐸
[

𝑑𝑘,𝑡
]

≤ 0, for all 𝑘 = 1,… , 𝑚, (44)

meaning that the benchmark model is not inferior to any of the models 𝑘 = 1,… , 𝑚. The test statistic can be expressed as:

SPA = max
𝑘

√

𝑇𝑑𝑘
𝜔𝑘

, (45)

where 𝑑𝑘 is the mean of 𝑑𝑘,𝑡 and 𝜔2
𝑘 is a consistent estimator of the asymptotic variance.

The objective of the MCS procedure is to determine the set of best models, denoted as 𝑀𝑏𝑒𝑠𝑡, from a given collection of models,
. The set of the best models is defined as:

𝑀𝑏𝑒𝑠𝑡 ≡
{

𝑖 ∈𝑀 ∶𝐸
[

𝑑𝑖𝑗
]

≤ 0
}

for all 𝑗 ∈𝑀, (46)

here 𝑑 = LF − LF is the loss differential for 𝑖, 𝑗 ∈𝑀 .
𝑖𝑗 𝑖,𝑡 𝑗,𝑡
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Table 4
Evaluation of covariance matrix forecasts.

Model Forecast evaluation criteria

LF SPA MCS
p-value p-value

Exchange-traded funds

DCC-GARCH 4.789 0.000 0.000
DCC-CARR 4.862 0.000 0.000
DCC-RGARCH 3.879 0.000 0.000
DCC-OHLC 2.932 0.573 1.000*

Currency rates

DCC-GARCH 0.535 0.000 0.000
DCC-CARR 0.506 0.000 0.000
DCC-RGARCH 0.506 0.000 0.000
DCC-OHLC 0.444 0.570 1.000*

The evaluation period is January 4, 2016, to December 31, 2018 (754 and 774 forecasts for
ETFs and currency rates, respectively). The realized variance is used as a proxy of variance and
estimated as the sum of squares of 5-min returns, the realized covariance is used as a proxy of
covariance and estimated as the sum of products of 5-min returns, LF is the squared Frobenius
loss function for the conditional covariance matrix. We apply the SPA test four times, each time
changing the model which is the benchmark. It means that the given SPA p-value refers to the
benchmark model specified in the first column of the table.
*Indicates that models belong to the model confidence set with a confidence level of 0.90,
p-values for the SPA and MCS tests are computed by the bootstrapping methodology (Hansen,
2005).

The null hypothesis is as follows:

𝐻0 ∶𝐸
[

𝑑𝑖𝑗,𝑡
]

= 0, for all 𝑖, 𝑗 ∈𝑀𝑠, (47)

where 𝑀𝑠 ⊂ 𝑀 . The testing procedure begins with initially setting 𝑀𝑠 =𝑀 . Then the null hypothesis is tested at a given significance
level. If the null is not rejected then the 𝑀𝑏𝑒𝑠𝑡 =𝑀𝑠, otherwise the model that contributes most to the test statistic is removed from
𝑀𝑠 and the whole procedure is repeated until there are no more models to be removed. The 𝑀𝑏𝑒𝑠𝑡 is then referred to as the model
confidence set (MCS). The best models are selected with a given level of confidence in terms of a criterion for the loss function that
is user-specified. In our case, we use the squared Frobenius loss function for the conditional covariance matrix (formula (42)).

The p-values for both tests are given in Table 3. The results of the SPA test indicate that the only model, which is not outperformed
significantly by any of the alternatives is the DCC-OHLC model. According to the results of the MCS test, only the DCC-OHLC model
belongs to the model confidence set. It clearly indicates that the most accurate estimates of the conditional covariance matrix are
based on the proposed DCC model.

3.2. Out-of-sample forecasts

In this section, we compare the forecasting performance of the four analyzed multivariate GARCH models: DCC-GARCH, DCC-
CARR, DCC-RGARCH and DCC-OHLC. For the starting sample (i.e., January 3, 2012 to December 31, 2015) we estimate the
parameters of the models and compute one-day-ahead forecasts of the conditional covariance matrix. Consecutively, we add one new
observation to the estimation sample while at the same time dropping the oldest observation. Then, based on the new estimation
sample we re-estimate models and compute forecasts. The procedure is repeated until we obtain forecasts for the three years from
January 4, 2016 to December 31, 2018.

The forecasts from the competing models are evaluated based on the squared Frobenius loss function defined in Eq. (42),
however, the estimated conditional covariance matrix is replaced by its forecast. We check whether the differences in the forecasting
performance among the DCC models are statistically significant by performing the SPA and MCS tests. The results of these tests are
given in Table 4. We apply the SPA test four times, each time changing the model which is the benchmark. It means that the
presented SPA 𝑝-value refers to the benchmark model specified in the first column of Table 4.

The lowest values of the squared Frobenius loss function, both for ETFs and currency rates, are for the DCC-OHLC model. The
results of the SPA test indicate that the only model, which is not outperformed significantly by any of the alternatives is the DCC-
OHLC model. Similar conclusions come from the MCS test. Only our proposed model belongs to the model confidence set. It means
that the covariance matrix forecasts from the DCC-OHLC model are significantly more accurate than the forecasts based on the
DCC-GARCH, DCC-CARR, DCC-RGARCH models for both ETFs and currency rates.

Additionally, we evaluate variance and covariance forecasts separately. The best forecasts are formulated based on the RGARCH
and DCC-OHLC models for variance and covariance, respectively (these results are available from the authors upon request).
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3.3. Value-at-risk forecasts

In this section, we check which of the considered models makes the most accurate forecasts of value-at-risk (VaR). VaR was
developed by financial practitioners as an easily interpretable number that encodes information about a portfolio’s risk. We formulate
daily forecasts of VaR for two separate portfolios of exchange-traded funds and currency rates. All the portfolios are constructed
with equal weights. The same assets and forecasting period are assumed as in the analysis of covariance matrices in Section 3.2

Following Abad et al. (2014) our evaluation is based on two approaches: the first involves testing the VaR forecasts for statistical
accuracy, while the second relies on the measurement of the loss function to the economic agent. We test the statistical accuracy
of the forecasts based on: the unconditional coverage test of Kupiec (1995), the independence and conditional coverage tests of
Christoffersen (1998), and the unconditional coverage, independence and conditional coverage tests of Candelon et al. (2011). The
results of the tests for the 95% VaR forecasts are given in Table 5 (the outcomes for the 99% confidence level are very similar and
available from the authors upon request). The results for the Candelon et al. (2011) tests are presented for 5 moments, but we also
obtained very similar results for 1, 2, 3, 4 and 6 moments.

None of the models provide fully satisfactory results for ETFs. On the other hand, all models pass the statistical criteria for
currency rates. These statistical test results do not differ sufficiently among the competing models to clearly indicate which one is
better. For that reason, we evaluate the models based on loss functions. Lopez (1998) suggested measuring the accuracy of VaR
forecasts by the distance between observed returns and forecasted VaR. A model is penalized if a violation takes place and it is
preferred to another one when it gives a lower loss value. In the general form he proposed the following formula:

𝐿𝐹𝑇 =

{

𝑓
(

𝑟𝑇 , 𝑉 𝑎𝑅𝑇
)

𝑖𝑓 𝑟𝑇 ≤ 𝑉 𝑎𝑅𝑇 ,

𝑔
(

𝑟𝑇 , 𝑉 𝑎𝑅𝑇
)

𝑖𝑓 𝑟𝑇 ≥ −𝑉 𝑎𝑅𝑇 ,
(48)

where 𝑇 is the forecast period, 𝑓 (𝑥, 𝑦) and 𝑔(𝑥, 𝑦) are such functions that 𝑓 (𝑥, 𝑦) ≥ 𝑔(𝑥, 𝑦). Summing 𝐿𝐹𝑡 over the back testing period
we obtain

𝐿𝐹 =
𝑁𝑓
∑

𝑇=1
𝐿𝐹𝑇 , (49)

where 𝑁𝑓 is the number of forecasts.
The best model is the one that minimizes (49). The regulator’s loss function (RLF) takes into consideration the magnitude of

the losses only when they occur, it is useful to evaluate the bank’s internal models. We concentrate on regulator loss functions
as the Basel Committee on Banking Supervision noted that the magnitude, as well as the number of VaR violations is a matter of
regulatory concern (Basel Committee on Banking Supervision, 2011, 2019). We apply the loss function of Sarma et al. (2003) and
three functions of Caporin (2008) given, respectively, as:

𝑅𝐿𝐹 (𝑆𝑇𝑆) =

{

(

𝑟𝑇 − 𝑉 𝑎𝑅𝑇
)2 if 𝑟𝑇 ≤ 𝑉 𝑎𝑅𝑇 ,

0 if 𝑟𝑇 ≥ −𝑉 𝑎𝑅𝑇 ,
(50)

𝑅𝐿𝐹 (𝐶1) =

⎧

⎪

⎨

⎪

⎩

|

|

|

|

1 −
|

|

|

|

𝑟𝑇
𝑉 𝑎𝑅𝑇

|

|

|

|

|

|

|

|

if 𝑟𝑇 ≤ 𝑉 𝑎𝑅𝑇 ,

0 if 𝑟𝑇 ≥ −𝑉 𝑎𝑅𝑇 ,
(51)

𝑅𝐿𝐹 (𝐶2) =

⎧

⎪

⎨

⎪

⎩

(

|

|

𝑟𝑇 || − |

|

𝑉 𝑎𝑅𝑇 ||
)2

𝑉 𝑎𝑅𝑇
if 𝑟𝑇 ≤ 𝑉 𝑎𝑅𝑇 ,

0 if 𝑟𝑇 ≥ −𝑉 𝑎𝑅𝑇 ,
(52)

𝑅𝐿𝐹 (𝐶3) =
{

|

|

𝑟𝑇 − 𝑉 𝑎𝑅𝑇 || if 𝑟𝑇 ≤ 𝑉 𝑎𝑅𝑇 ,
0 if 𝑟𝑇 ≥ −𝑉 𝑎𝑅𝑇 .

(53)

To assess whether the differences between values of loss functions are statistically significant, we perform the SPA and MCS
ests. The results for the 95% VaR forecasts are given in Table 6 (the outcomes for the 99% confidence level are very similar and
vailable from the authors upon request). For all loss functions we apply the SPA test four times, each time changing the model
hich is the benchmark. It means that the presented SPA 𝑝-value refers to the benchmark model specified in the heading of Table 6.

For all considered loss functions, significantly more accurate VaR forecasts are constructed based on the DCC-OHLC model than
he DCC-GARCH, DCC-CARR and DCC-RGARCH models. The results are very similar for both commonly employed confidence levels,
5% and 99%. This means that the application of the proposed model can be beneficial for calculating risk measures.

. Conclusions

Volatility models are largely based solely on closing prices, meanwhile, daily low and high prices significantly increase the
mount of information about the variability of returns during a day. Low and high prices are almost always available with daily
losing prices for financial series which is why their usage in volatility models is important from a practical point of view. In this
tudy, we suggest a new specification of the DCC model based on OHLC prices (denoted by DCC-OHLC), which is a combination of
he DCC model of Tse and Tsui (2002), the Range-GARCH model of Molnár (2016) and the correlation estimator of Popov (2016)
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Table 5
Evaluation of 95% VaR forecasts: unconditional coverage and independence tests.

Statistic DCC-GARCH DCC-CARR DCC-RGARCH DCC-OHLC

Value P-value Value P-value Value P-value Value P-value

Exchange-traded funds

LRUC 0.752 0.386 0.499 0.480 0.296 0.586 0.208 0.648
LRIND 4.289 0.038 7.182 0.007 5.107 0.024 8.143 0.004
LRCC 5.041 0.080 7.681 0.021 5.403 0.067 8.351 0.015
JUC 0.950 0.333 0.688 0.413 0.463 0.463 0.085 0.744
JIND 11.641 0.010 8.429 0.022 3.601 0.142 6.852 0.034
JCC 10.231 0.042 8.889 0.055 3.927 0.256 7.430 0.076

Currency rates

LRUC 0.289 0.591 0.002 0.961 0.141 0.707 0.002 0.961
LRIND 0.040 0.841 0.001 0.981 0.016 0.899 0.633 0.426
LRCC 0.329 0.848 0.003 0.998 0.157 0.924 0.636 0.728
JUC 0.453 0.478 0.044 0.832 0.273 0.592 0.044 0.823
JIND 2.157 0.311 0.501 0.821 0.452 0.837 0.460 0.834
JCC 1.931 0.579 0.510 0.941 0.551 0.924 0.468 0.946

The evaluation period is January 4, 2016, to December 31, 2018 (754 and 774 forecasts for ETFs and currency rates, respectively).
LRUC is the statistic for the Kupiec (1995) unconditional coverage test, LRIND is the statistic for the Christoffersen (1998)
independence test, LRCC is the statistic for the Christoffersen (1998) conditional coverage test, JUC is the statistic for the Candelon
et al. (2011) unconditional coverage test, JIND is the statistic for the Candelon et al. (2011) independence test for up to five lags,
JCC is the statistic for the Candelon et al. (2011) conditional coverage test with the number of moments fixed to 5, p-values for
JUC, JIND, JCC were corrected by Dufour’s (2006) Monte Carlo procedure.

Table 6
Evaluation of 95% VaR forecasts: regulator loss functions tests.

Loss
function

DCC-GARCH DCC-CARR DCC-RGARCH DCC-OHLC

Value
× 100

SPA
p-value

MCS
p-value

Value
× 100

SPA
p-value

MCS
p-value

Value
× 100

SPA
p-value

MCS
p-value

Value
× 100

SPA
p-value

MCS
p-value

Exchange-traded funds

RLF(STS) 0.863 0.017 0.002 0.920 0.006 0.004 0.812 0.005 0.004 0.467 0.590 1.000*
RLF(C1) 2.347 0.001 0.000 2.441 0.000 0.000 2.176 0.000 0.000 1.325 0.538 1.000*
RLF(C2) 1.220 0.001 0.000 1.341 0.000 0.006 1.147 0.000 0.000 0.532 0.553 1.000*
RLF(C3) 1.678 0.001 0.000 1.685 0.000 0.000 1.545 0.000 0.000 1.115 0.533 1.000*

Currency rates

RLF(STS) 0.073 0.005 0.007 0.059 0.042 0.059 0.073 0.003 0.005 0.053 0.958 1.000*
RLF(C1) 1.517 0.000 0.000 1.285 0.009 0.009 1.477 0.000 0.000 1.133 0.511 1.000*
RLF(C2) 0.228 0.006 0.010 0.180 0.040 0.047 0.219 0.002 0.008 0.153 0.960 1.000*
RLF(C3) 0.487 0.000 0.000 0.421 0.012 0.015 0.474 0.000 0.000 0.381 0.507 1.000*

The evaluation period is January 4, 2016, to December 31, 2018 (754 and 774 forecasts for ETFs and currency rates, respectively). RLF(STS) is the loss function
by Sarma et al. (2003), RLF(C1), RLF(C2), RLF(C3) are three loss functions by Caporin (2008). The lowest values of loss functions are marked in bold. For
all loss functions we apply the SPA test four times, each time changing the model which is the benchmark. It means that the given SPA p-value refers to the
benchmark model specified in the heading of the table.
*Indicates that models belong to the model confidence set with a confidence level of 0.90, p-values for the SPA and MCS tests are computed by the bootstrapping
methodology (Hansen, 2005).

based on OHLC prices. To the best of our knowledge, the proposed model is the first multivariate volatility model with the correlation
estimator based on OHLC prices that can be applied to any assets for which such daily prices are available.

We compare the new model with the DCC-GARCH model of Engle (2002), the DCC-CARR model of Chou et al. (2009) and the
CC-RGARCH model of Fiszeder et al. (2019). We evaluate these models on two data sets: exchange-traded funds and currency

ates.
The proposed model improves conditional covariance matrix estimates and increases the accuracy of the covariance matrix

ompared with the standard DCC model and two competing range-based DCC models, i.e., DCC-CARR and DCC-RGARCH. Moreover,
aR forecasts based on the DCC-OHLC model have no advantage over the forecasts based on other DCC models in terms of statistical
ccuracy, but they are more accurate under the loss functions to the economic agent. The advantage of the suggested model comes
rom the usage of the correlation estimator based on OHLC prices. Moreover, the main conclusions of the study are also robust to
he forecast evaluation criterion employed.

In the future, the suggested approach can be extended to other multivariate GARCH or stochastic volatility models. For example,
he newly proposed models such as the IDR-DCC-NL model of De Nard et al. (2021), the dynamic conditional angular correlation
odel of Jarjour and Chan (2020), the multivariate GARCH model with the dynamic beta of Raddant and Wagner (2021) would

robably also benefit from applying the correlation estimator based on OHLC prices.
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