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A B S T R A C T   

This paper studies the impact of investor attention to oil prices on returns, volatility, and covariances of three 
exchange traded funds representing oil, gold, and the stock market. For this purpose, we suggest a new multi-
variate volatility model based on open, high, low, and closing prices that incorporates the impact of investor 
attention on returns, volatility, and covariances. We find that this model, which incorporates Google searches for 
“oil prices” as an exogeneous variable, outperforms other considered multivariate volatility models, and dem-
onstrates that Google searches for “oil prices” can explain and forecast covariances between returns of oil, gold, 
and the stock market.   

1. Introduction 

This paper studies the impact of investor attention to oil price, as 
measured by Google searches for “oil prices” on returns, volatility and 
covariance of three exchange traded funds representing oil, gold, and 
the stock market. Our paper unites two strands of literature: 1) the 
impact of investor attention on the oil market and 2) the comovement 
between the oil market and other markets. 

Crude oil is the world’s most important commodity, and under-
standing the oil market and its risks is therefore important (Hung et al., 
2008; Hung et al., 2011; Gkillas et al., 2020; Gkillas et al., 2021a; Tiwari 
et al., 2020). It has been long recognized that investor attention has an 
influence on financial markets, see e.g. Da et al. (2011). Attention can be 
measured in various ways, for example from news articles or social 
networks such as twitter (Gjerstad et al., 2021). One particularly useful 
data source to estimate attention is Google Trends. Google is the largest 
search engine in the world, and information regarding how much people 
search for a particular topic in Google is therefore a very relevant 
measure of attention. 

It is important to emphasize that the channel between attention and 
financial markets is indirect. People often search for additional infor-
mation before they make decisions, including trading decisions. In other 
words, the act of searching for information often precedes the actual 
action. This way, attention estimated from Google Trends might precede 

actual trading, and therefore might predict returns and volatility in 
various financial markets. In other words, it is not searching on Google 
that moves the markets, but information about Google searches could 
predict subsequent movements in the markets. 

Researchers have also studied the impact of attention measured from 
Google Trends on the oil market. The most common applications are the 
impact of investor attention on oil price (Li et al., 2015; Yao et al., 2017; 
Elshendy et al., 2018; Li et al., 2019; Li et al., 2020; Yang et al., 2021; 
Chen et al., 2022), the influence on oil price volatility (Afkhami et al., 
2017; Campos et al., 2017; Wang et al., 2018; Xiao and Wang, 2021; Liu 
et al., 2022), or the impact of investor attention on both oil price and oil 
price volatility (Guo and Ji, 2013; Ji and Guo, 2015; Qadan and Nama, 
2018). Review of these articles is provided in the next section. 

Similarly, there is a large volume of literature about comovement 
between oil and other commodities (Ahmadi et al., 2016; Bašta and 
Molnár, 2018; Behmiri et al., 2019). However, research about the 
impact of investor attention on the comovement (covariance) between 
oil price and other assets is very limited. To the best of our knowledge, 
the only study on this topic is Prange (2021). This novel study finds that 
online investor attention is a statistically significant determinant of the 
time-varying correlations between oil and other assets. 

The main difference between Prange (2021) and our study is that 
Prange (2021) use a volatility model based on closing prices, while we 
suggest a new volatility model based on open, high, low, and closing 
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prices. Overwhelmingly, multivariate volatility models are based on 
closing prices. Meanwhile, the incorporation of low and high prices for 
such models can both improve the estimation of variances and co-
variances and increase their forecasting accuracy (see e.g. Chou et al., 
2009; Su and Wu, 2014; Fiszeder and Fałdziński, 2019; Fiszeder et al., 
2019; De Nard et al., 2022; Fiszeder and Małecka, 2022; Fiszeder et al., 
2023). Low and high prices are generally available with closing prices 
and can be easily utilized. 

Similarly to Prange (2021), we use the extended dynamic conditional 
correlation (DCC) model of Engle (2002) to incorporate the influence of 
exogenous variables in the dynamic conditional correlation. There are 
several possible ways to introduce the influence of exogenous variables 
on correlations (see Schopen, 2012). Silvennoinen and Teräsvirta (2005) 
introduced the smooth transition conditional correlation model for 
which time-varying conditional correlations change smoothly between 
two regimes driven by an exogenous variable. Sheppard (2008) assumed 
that the symmetric square root of the covariance matrix is a function of 
exogenous variables. Chou and Liao (2008) and Vargas (2008) extended 
the DCC model of Engle (2002) to incorporate the influence of exoge-
nous variables and introduced the dynamic conditional correlation with 
exogenous variables model (DCC-X). Min and Hwang (2012) and Kim 
et al. (2013) introduced the bivariate DCC-X model where the condi-
tional correlation coefficient is determined by exogenous variables. In 
this paper, we explore the DCC-X model of Vargas (2008) because it is 
quite general (not limited to a bivariate case) but at the same time it is 
relatively easy to apply. 

We analyze three exchange-traded funds: United States Oil Fund, 
SPDR Portfolio S&P 500 Growth and SPDR Gold Shares and confront the 
proposed model with three competing models: the DCC model of Engle 
(2002), the DCC-X model of Vargas (2008) and the DCC-RGARCH model 
of Fiszeder et al. (2019). An application of the alternative models is for 
benchmark purposes and used here to assess the importance of addi-
tional information from Google searches and the range-based model 
framework. 

This study has two main contributions. The first one is a proposition 
of the new DCC-X-RGARCH-X model. It is an extension of the DCC- 
RGARCH model of Fiszeder et al. (2019) which incorporates exoge-
nous variables in the equations of conditional means, variances and 
covariances. Second, we utilize this model, and demonstrate that Google 
searches for “oil prices” can explain and forecast covariances between 
the oil exchange-traded fund and exchange traded funds representing 
the stock market and gold. Moreover, the DCC-X-RGARCH-X model, 
which incorporates Google searches for “oil prices” as exogeneous var-
iable, outperform other considered multivariate volatility models. 

The rest of the paper is organized in the following way. Section 2 
reviews the related literature. Section 3 presents the proposed DCC-X- 
RGARCH-X model. Section 4 describes the data used in the research. 
In Section 5 the influence of Google searches on volatility and depen-
dence for the selected ETFs is analyzed. In Section 6, we perform a 
robustness check for the inclusion of the COVID-19 crisis. Section 7 
provides conclusions. 

2. Literature review 

In this section, we review papers that studied the impact of attention 
on crude oil price and its volatility. 

Li et al. (2015) measure attention from Google Trends for “oil price”. 
They utilize Granger causality and regressions and conclude that Google 
searches for “oil price” capture the attention of non-professional traders, 
and there is a feedback loop between attention and crude oil price. 

Yao et al. (2017) obtain Google searches for “oil price”, “current oil 
prices”, “price per barrel”, “Bloomberg energy”, “oil price per barrel”, 
“current oil”, “crude oil chart”, “crude oil”, “current crude oil”, “current 
crude oil price”, and “current crude” and use principal component 
analysis to construct the investor attention measure. They employ the 
structural vector autoregression model and find that investor attention 

has a significant negative impact on oil prices and contributes 15% to 
the long-run fluctuation of the oil prices. 

Elshendy et al. (2018) study whether information extracted from 
Twitter, Google Trends, Wikipedia, and the Global Data on Events, 
Location and Tone database can improve the forecasts of the crude oil 
price. They use autoregressive integrated moving average with explan-
atory variable models and find that the information combined from 
these platforms contains a valuable information for forecasting. 

Li et al. (2019) construct the investor attention measure from Google 
searches for “crude oil”, “Brent” and “petroleum”. They utilize nonlinear 
Granger causality tests and find bidirectional causality between investor 
attention and crude oil returns. However, this Granger causality is 
stronger from investor attention to returns. 

Li et al. (2020) also use Google Trends to construct attention mea-
sure. However, they combine searches for “oil price” in the English 
language with equivalent searches also in Arabic, Spanish, Portuguese, 
Japanese, German and Persian. As methods, they use not only re-
gressions, but also machine learning techniques such as neural net-
works. They find that Google Trends attention improves crude oil price 
predictions, and the multilingual attention measure works better than 
single-language attention measure. 

Yang et al. (2021) utilize Google searches for 40 oil-related search 
terms, such as “oil price”, “oil demand” or “oil supply”, together with 
various economic variables. They use machine learning techniques for 
the dimension reduction of input variables and also for the forecasting of 
crude oil price. They conclude that Google Trends data is useful in oil 
price forecasting and that machine learning “divide and conquer” 
techniques work well in forecasting. 

Chen et al. (2022) use Google Trends to obtain 17 oil-related search 
terms, such as “WTI” or “petrol price”. Attention is constructed from 
these using principal component analysis. They employ wavelet co-
herency, causality-in-quantile, and quantile-on-quantile regression 
methods to study the linkage between investor attention and crude oil 
across time and frequency domains. They find that in most cases, 
attention is negatively correlated with the crude oil market. However, 
the impact of attention on crude oil differs across quantiles, and it be-
comes greatest under extreme market conditions. 

Afkhami et al. (2017) study volatility of not only crude oil, but also 
conventional gasoline, heating oil, and natural gas. They obtain 90 oil- 
and energy-related keywords from Google Trends and use Granger 
causality tests to choose relevant search terms. They use the GARCH 
model and find that attention improves volatility models for these en-
ergy commodities. 

Campos et al. (2017) use Google searches for “oil prices” as a proxy 
for investor attention to oil and study whether it can predict the implied 
volatility of oil. They use regressions as their method and find that 
attention is useful in predicting the implied volatility of oil even if 
traditional financial and macro variables are taken into account. 
Moreover, attention has economic value, allowing traders of volatility- 
exposed portfolios to increase returns. 

Wang et al. (2018) combine Google searches for “crude oil”, “oil 
price”, “crude oil price”, and “crude oil prices”. This variable is used in 
extreme machine learning models. They conclude that Google Trends is 
a useful tool for quantifying investor attention that can help predict 
volatility in the oil market. 

Xiao and Wang (2021) also use Google Trends to estimate sentiment. 
To ensure robustness, they consider searches for “oil price”, “oil prices”, 
and “crude oil”. They decompose volatility into good and bad volatility, 
and using regressions, they find that changes in investor attention 
mainly affect bad volatility rather than good volatility. 

Liu et al. (2022) obtain Google Trends data for 519 keywords and 
then use backwards regression to select the final 83 search terms. They 
further utilize 5-min high-frequency oil price data to construct daily 
volatilities. The considered models (heterogeneous autoregressive 
model and heterogeneous autoregressive model with Markov-switching) 
perform better when attention is included in these models. 
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Guo and Ji (2013) use Google Trends to obtain market concerns for 
oil price and market concerns for oil demand. They use cointegration 
and the exponential generalized autoregressive conditional hetero-
skedasticity (EGARCH) model and conclude that there is a long-term 
equilibrium between oil prices and long-run market concerns. 

Ji and Guo (2015) utilize data from Google Trends in their study of 
the impact of oil-related events (hurricanes, global financial crisis, 
Libyan war, OPEC conference) on oil price and its volatility. They find 
that responses vary across events. The impact of the global financial 
crisis on the oil price returns was significantly negative, the impact of 
the Libyan war and hurricanes was significantly positive, while re-
actions to OPEC production announcements were inconsistent. 

Qadan and Nama (2018) utilize an extensive list of variables 
capturing investor sentiment and find that this sentiment has a signifi-
cant effect on oil prices. Moreover, volatility in these sentiment indices 
spills over and can explain part of the oil price volatility. Regarding the 
Google searches for “oil price”, “oil prices”, or “crude oil”, they find a 
bidirectional relationship between these searches and oil price volatility. 

3. The DCC-X-RGARCH-X model 

In this paper, we introduce the DCC-X-RGARCH-X model and 
confront it with three competing DCC specifications: the DCC model of 
Engle (2002), the DCC-RGARCH model of Fiszeder et al. (2019), and the 
DCC-X model of Vargas (2008). The DCC and DCC-RGARCH models are 
similar in their correlation part but differ in their specification of uni-
variate conditional variances. The DCC model is based on the GARCH 
model of Bollerslev (1986), while the DCC-RGARCH model is based on 
the RGARCH model of Molnár (2016). Whereas the DCC-X model is an 
extension of the DCC model that incorporates exogenous variables that 
drive the time-varying conditional covariance. In this section, we 
introduce the new model and explain how it includes the remaining 
parameterisations as special cases. 

Let us assume that εt (N × 1 vector) is the innovation process for the 
conditional mean and can be written as: 

εt|ψt− 1 ∼ Normal(0, covt), (1)  

where ψ t− 1 is the set of all information available at time t − 1, Normal is 
the multivariate conditional normal distribution, and covt is the N × N 
symmetric conditional covariance matrix. 

The DCC-X(P,Q)-RGARCH-X(p,q) model can be presented as: 

covt = DtcortDt, (2)  

cort = Q*− 1
t QtQ*− 1

t , (3)  

Qt =

(

1 −
∑Q

i=1
ζi −

∑P

j=1
θj − Kξ′

1X

)

S+
∑Q

i=1
ζi(zt− iz′t− i)+

∑P

j=1
θjQt− j+Kξ′

1 Xt− 1,

(4)  

where Dt = diag (h1t
1/2, h2t

1/2,…, hNt
1/2), hkt are conditional variances (k = 1, 

2, …, N), zt is the standardized N × 1 residual vector assumed to be 
serially independently distributed given as zt = Dt

− 1εt, cort is the time- 
varying N × N conditional correlation matrix of zt, S is the uncondi-
tional N × N covariance matrix of zt, Qt* is the diagonal N × N matrix 
composed of the square root of the diagonal elements of Qt, K is the N ×
N matrix that can either be an identity matrix or a matrix of ones, ξ1 is 
the r × 1 vector of parameters, Xt is the r × 1 vector of exogenous var-
iables, X = 1

n
∑n

t=1Xt, and n is the number of observations used in 
estimation. 

The parameters ζi (for i = 1, 2, …, Q), θj (for j = 1, 2, …, P) are 
nonnegative and satisfy the condition 

∑Q
i=1ζi +

∑P
j=1θj < 1. The model 

implies that all conditional correlations are equally influenced by any 
exogenous variable. 

We assume that univariate innovation processes εkt (k = 1, 2, …, N) 

are given as (to describe autocorrelation or cross-correlation of returns 
conditional mean equations can be extended): 

εkt = rkt − γk0 + γ′

k1 Xt− 1, (5)  

εkt|ψt− 1 ∼ Normal(0, hkt), (6)  

where rkt are returns calculated as ln(pkt/pkt− 1), where pkt are closing 
prices at time t, γk1 is the r × 1 vector of parameters, Normal is the 
univariate conditional normal distribution, and conditional variances hkt 
are described as univariate RGARCH-X(p,q) models: 

hkt = αk0 +
∑q

i=1
αkiσ2

P,k t− i +
∑p

j=1
βkjhk t− j +φ′

k1 Xt− 1, (7)  

where σ2
Pt is the Parkinson estimator of variance (Parkinson, 1980) given 

as σ2
Pt = [ln(Ht/Lt)]2/(4ln2) and Ht and Lt are high and low prices over a 

day, φk1 is the r × 1 vector of parameters, αk0 > 0, αki ≥ 0, βkj ≥ 0 (for k =
1, 2, …, N; i = 1, 2, …, q; j = 1, 2, …, p). If Xt ≥ 0, then φk1 ≥ 0 gua-
rantees the positivity of the conditional variance hkt for all time t. In the 
case of negative values of the exogenous variables in Xt, the positive 
value of the conditional variance must be verified for all t. A remedy 
would be to use the logarithm of hkt in Eq. (7). 

To ensure the positive definiteness of Qt, the matrix K can be 
assumed as an identity matrix. It is additionally specified that ξ’1 =

(ξ11,ξ21,…,ξr1)′, where ξs1 =

̅̅̅̅̅̅̅̅̅

ξ(s1)s1

√

, ξs1
(s1) ∈ (0,1) (see Vargas, 2008). 

This condition is, however, restrictive because it implies that the exog-
enous variables only drive the conditional variances qii,t but not the 
conditional covariances qij,t (i ∕= j), where qij,t is the i, jth entry of Qt 
(nevertheless, since the conditional correlation rij,t is equal to rij,t = qij,t/ 
(qii,t qjj,t)− 1/2, it is still indirectly a function of the exogenous variables). 
This restriction may be relaxed by setting K as a matrix of ones instead.1 

An additional problem is that the condition ξs1 =

̅̅̅̅̅̅̅̅̅

ξ(s1)s1

√

restricts the 
sign of the parameters to be non-negative. This is a limiting requirement 
and does not allow for the exogenous variable to have a negative in-
fluence on the matrix Qt. A solution would be to allow ξs1 on negative 
values when K is an identity matrix provided that the positive defi-
niteness of the matrix Qt is not violated for all t. 

All three competing DCC specifications: the DCC model of Engle 
(2002), the DCC-RGARCH model of Fiszeder et al. (2019), and the DCC- 
X model of Vargas (2008) do not contain exogenous variables in the 
conditional means (it means that γk1 = 0 in Eq. (5) for all above models). 
Notice that for φk1 = 0, the RGARCH-X model (Eq. (7)) reduces to the 
RGARCH model of Molnár (2016). It means that exogenous variables are 
not present in the conditional variance. If φk1 = 0 and ξ1 = 0, then the 
DCC-X-RGARCH-X model reduces to the DCC-RGARCH model of Fis-
zeder et al. (2019). Supposing σ2

P,k t− i in Eq. (7) are replaced by ε2
kt− i and 

simultaneously φk1 = 0, then the DCC-X-RGARCH-X model reduces to 
the DCC-X model of Vargas (2008).2 If it is additionally assumed that ξ1 
= 0, then it is equivalent to the DCC model of Engle (2002). 

Parameters of the DCC-X-RGARCH-X model, similarly to the pa-
rameters of the DCC model, can be estimated by the quasi-maximum 
likelihood method using a two-stage approach (see Engle and Shep-
pard, 2001). Let the parameters of the DCC-X-RGARCH-X model Θ be 
written in two groups Θ′ = (Θ′

1,Θ′
2), where Θ1 is the vector of pa-

rameters of conditional means and variances and Θ2 is the vector of 
parameters of the correlation part of the model. The log-likelihood 
function can be presented as the sum of two parts: 

1 In the empirical part of the paper, we take this less restrictive approach and 
assume that K is a matrix of ones and check the positive definiteness of the Qt 
matrix for all t. 

2 Actually, the model of Vargas (2008) contains an additional part respon-
sible for asymmetric effects which we omit in the analysis. 
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L(Θ) = LVol(Θ1)+LCorr(Θ2|Θ1 ), (8)  

where LVol(Θ1) can be viewed as the volatility component: 

LVol(Θ1) = −
1
2
∑n

t=1

(
Nln(2π)+ 2ln|Dt| + ε′tD− 2

t εt
)
, (9)  

while LCorr(Θ2|Θ1) represents the correlation part: 

LCorr(Θ2|Θ1 ) = −
1
2
∑n

t=1

(
ln|cort| + z′tcor− 1

t zt − z′tzt
)

(10)  

LVol(Θ1) can be presented as the sum of log-likelihood functions of N 
univariate RGARCH-X models: 

LVol(Θ1) = −
1
2
∑N

k=1

(

nln(2π)+
∑n

t=1

(

ln(hkt)+
ε2
kt

hkt

))

(11) 

Therefore in the first stage, the parameters of univariate RGARCH-X 
models can be estimated separately for each of the assets and the esti-
mates of hkt can be obtained. In the second stage, standardized by their 
estimated standard deviations residuals are applied to estimate the pa-
rameters of the correlation part (Θ2) conditioning on the parameters 
estimated in the first stage (Θ̂1). 

The positive definiteness of the conditional covariance matrix can be 
achieved by the constrained quasi-maximum likelihood estimation (see 
Chou and Liao, 2008). 

4. Data 

We analyze how Google searches for the term “oil prices” influence 
variances and covariances for three exchange-traded funds (ETFs) listed 
on the New York Stock Exchange Arca, namely: United States Oil Fund 
(holds crude oil futures contracts and other oil-related contracts, pre-
dominantly short-term NYMEX futures contracts on WTI crude oil), 
SPDR Portfolio S&P 500 Growth (holds large-capitalization growth 
stocks selected from the S&P 500 index), and SPDR Gold Shares (holds 
gold bullion). They will be referred to hereinafter as oil, stocks and gold, 
respectively. 

The dynamics of the opening jump (the difference between today’s 
opening price and yesterday’s closing price) is different from the dy-
namics of the trading part of the day. The overnight volatility causes the 
noise, so to circumvent that issue, we investigate open-to-close returns 
instead of close-to-close returns. We apply the percentage logarithmic 
returns calculated as rt = 100 ln (pct/pot), where pct and pot are closing 
and opening prices at time t, respectively. 

We evaluate the competing models based on daily data in the 
fourteen-year and two-month period from April 13, 2006, to June 11, 
2020. This is a relatively large sample that comprises not only a very 
volatile periods, i.e. the collapse of Lehman Brothers, the global finan-
cial crisis, the European sovereign debt crisis and the financial turmoil 
associated with the outbreak of the COVID-19, but also tranquil periods 
with low volatility. Fig. 1 presents daily closing prices and returns for 
the three analyzed ETFs. 

The use of Google searches has attracted lots of attention in the 
literature (see e.g. Da et al., 2011; Joseph et al., 2011; Vozlyublennaia, 
2014; Bijl et al., 2016; Gwilym et al., 2016; Aalborg et al., 2019; Kim 
et al., 2019; among others). The Google Trends platform is used to 
obtain Google’s search volume index (henceforth SVI) that has been 
deemed as a significant proxy for investors’ attention (see Da et al., 
2011). The search phrase we used is “oil prices”. This phrase is directly 
related to oil and it also has enough searches to provide a daily volume 
index. Additionally, it is more likely to be used by investors and traders 
than other internet users because it contains the word “prices”. This 
way, the attention coming from potential or current individual investors 
can be transferred into trading orders that are related to oil. The same 
term was used by Campos et al. (2017) for forecasting the CBOE Crude 

Oil Volatility Index based on Heterogeneous Autoregressive models. 
We download daily data for 8 month intervals, with 3 month over-

lapping periods. Google Trends uses a standardized scale of 0 to 100, 
where 100 represents the highest query volume during a considered 
time period. ETFs are quoted on business days from Monday to Friday, 
therefore we exploit the same days for SVI. Raw SVI shouldn’t be used in 
the analysis directly, because its value depends on the time period of 
downloaded data. Following Bijl et al. (2016) we standardize SVI to 
obtain abnormal SVI (henceforth ASVI). Three months of overlapping 
observations between every pair of adjacent windows is used to stan-
dardize the scale of the next window. The formula for ASVIt is given as: 

ASVIt =
SVIt − SVIt

SSVI,t
, (12)  

where SVIt and SSVI, t are respectively the mean and standard deviation 
of SVIt calculated from the past 3 months as follows SVIt =

1
66
∑66

i=1SVIt− i, SSVI,t =

(
1
66
∑66

i=1(SVIt− i − SVIt)
2
)1/2

. 

It is worth analyzing not only the level of ASVIt but also its changes. 
That is why we also investigate the first differences of ASVIt calculated as 
ΔASVIt = ASVIt − ASVIt− 1. The values of SVIt and ΔASVIt are presented 
in Fig. 1. 

Table 1 gives the descriptive statistics for the logarithmic returns rt of 
the analyzed ETFs, levels of ASVIt and its first differences. SVIt values are 
not used directly in the models, which is why we do not compare its 
statistics with other series. The means are positive for stocks returns and 
ASVIt and negative for oil returns, gold returns, and the first differences 
of ASVIt. The highest and lowest values of standard deviation are for oil 
returns and gold returns, respectively. All distributions are asymmetric 
and all display high kurtosis. The distributions of ASVIt and ΔASVIt are 
significantly different from distributions of ETFs returns. Both of these 
series have much stronger asymmetry and higher leptokurtosis than 
returns of gold, stocks, or oil. 

5. The influence of Google searches on volatility and 
dependence of returns 

We consider four DCC models in the analysis:  

1) The DCC-GARCH model by Engle (2002),  
2) The DCC-X-GARCH-X model by Vargas (2008).3 In this specification, 

the exogenous variable is incorporated in the DCC-GARCH model. 
3) The DCC-RGARCH model by Fiszeder et al. (2019). In this specifi-

cation, the RGARCH model is applied in the DCC model instead of the 
univariate GARCH model.  

4) The proposed DCC-X-RGARCH-X model that is summarized by Eqs. 
(2)–(7). In this specification, the exogenous variable is incorporated 
in the DCC-RGARCH model. 

In both the DCC-X-GARCH-X and DCC-X-RGARCH-X models the 
exogenous variable ΔASVIt is incorporated into equations of conditional 
means, variances and covariances. We also tried ASVIt but its influence 
on ETFs was much weaker. ΔASVIt is calculated for the search words “oil 
prices”. For the GARCH-X and RGARCH-X models we check the posi-
tivity of the conditional variance hkt, and it is met for all time t. For both 
the DCC-X-GARCH-X and DCC-X-RGARCH-X models, we allow ξ11 to 
take on negative values and check the positive definiteness of the matrix 
Qt. This condition is met for all t. 

Parameters of the DCC-GARCH and DCC-X-GARCH-X models are 
estimated only based on closing prices, whereas for the estimation of 

3 Actually, the model of Vargas (2008) is the DCC-X-GARCH model, and it 
does not contain exogenous variable in the conditional means and variances but 
we add these components for a fair comparison. 
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both, i.e. the DCC-RGARCH and DCC-X-RGARCH-X models, both closing 
and low and high prices are applied. 

An application of the three alternative models is for benchmark 
purposes and for ability to assess the importance of additional infor-
mation from Google searches and the range-based model framework. 

Firstly, we compare the in-sample fitness of the models (Section 5.1) 
and then evaluate the forecasts from these models. We analyze variance 
(Section 5.2) and covariance forecasts (Section 5.3) separately because 

research regarding Google searches as the exogenous variable has 
already been performed for variances, whereas covariance forecasting in 
such a setup is virtually unknown. 

5.1. In-sample analysis 

Each mean equation is a constant because the sample returns of any 
ETF are not dependent on their own past returns nor on the past returns 

Fig. 1. Daily closing prices and returns of ETFs and values of SVI and first differences of ASVI.  
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of other ETFs. The parameters of the considered models are estimated 
using the quasi-maximum likelihood method with robust standard er-
rors. The in-sample analysis is performed for the period from April 13, 
2006, to April 9, 2010, and the estimates are given in Table 2. The out- 
of-sample forecasting results are presented in Sections 5.2 and 5.3. 

For all competing models, we calculate the likelihood function, 
including both the volatility and correlation parts. In order to assess 
whether the differences between values of the likelihood function of 
considered models are statistically significant, we apply the Rivers and 
Vuong (2002) and Clarke (2007) tests for non-nested models. The results 
of the tests for pairs of models are given in Table 3. The value of the 
likelihood function is significantly higher for the DCC-X-RGARCH-X 
model than for the competing models, which means that the proposed 
model best describes the dynamics of the three ETFs. Moreover, the 
DCC-X-GARCH-X model is better than the standard DCC-GARCH model, 
which indicates that information about “oil prices” from Google 
searches is important in modelling the returns of oil, stocks, and gold. On 
the other hand, the value of the likelihood function of the DCC-RGARCH 
model is significantly higher than the value of the DCC-X-GARCH-X 
model. It supports the claim that incorporating low and high prices 
has greater importance than including the exogenous variable, although 
not conclusively. 

The usage of range data significantly changes the parameters esti-
mates. Specifically, the estimates of the parameters αk1 are much higher 
and the estimates of the parameters βk1 much lower in the RGARCH and 

RGACH-X models compared with the GARCH and GARCH-X models. It is 
vital for modelling and forecasting volatility because for the RGARCH 
and RGARCH-X models, the shocks in the previous period have a 
stronger influence on the current volatility than the impact which is 
observed for the GARCH and GARCH-X models. Thus, models formu-
lated with range data respond more quickly to changing market condi-
tions. This property has already been demonstrated in other studies (see 
e.g. Chou et al., 2009; Fiszeder and Fałdziński, 2019; Fiszeder et al., 
2019). On the other hand, there are no considerable differences between 
the analyzed models in the estimates of parameters for the correlation 
component. 

The estimates of the parameters γk1 and φk1 are not statistically 
different from zero. It means that Google searches for the words “oil 
prices” do not influence the means and variances of ETFs returns. On the 
other hand, the estimates of the parameter ξ11 are negative and statis-
tically significant. It implies that the increase of Google searches causes 
the decrease of the covariance of ETFs returns. 

In order to get insight into the relationship between covariances and 
Google searches, we also apply the τ-th linear quantile regression model 
(see Koenker and Bassett Jr., 1978; Koenker, 2005). It can be written as: 

covR,t = γ0(τ)+ γ1(τ)ASVIt− 1 + εt(τ) (13)  

where covR, t is the realized covariance given as the sum of products of 5- 
min returns, ASVIt− 1 is the abnormal Google’s search volume index for 
the term “oil prices”. 

Table 1 
Summary statistics for daily returns of ETFs and values of search volume indices.  

Assets Mean × 102 Minimum Maximum Standard deviation Skewness Excess kurtosis 

Exchange-traded funds 
Oil − 2.553 − 14.842 12.601 1.695 − 0.219 9.703 
Stocks 1.359 − 8.922 7.956 0.989 − 0.347 13.713 
Gold − 0.941 − 7.483 10.328 0.805 0.231 16.899  

Google searches 
ASVI 0.799 − 3.747 38.869 1.539 8.570 189.892 
ΔASVI − 0.021 − 35.409 40.071 1.640 1.931 243.366 

The sample period is from April 13, 2006, to June 11, 2020. Δ means first differences of the series. 

Table 2 
Estimation results of the four DCC models for the analyzed ETFs.  

Parameters DCC-GARCH DCC-X-GARCH-X DCC-RGARCH DCC-X-RGARCH-X 

Estimate SE Estimate SE Estimate SE Estimate SE 

γ10 0.065 0.031 0.027 0.025 − 0.007 0.026 − 0.007 0.026 
γ11 – – 0.013 0.027 – – − 0.003 0.023 
α10 0.017 0.012 0.017 0.009 0.023 0.014 0.024 0.014 
α11 0.090 0.018 0.115 0.025 0.251 0.049 0.250 0.048 
β11 0.903 0.018 0.876 0.027 0.758 0.047 0.756 0.046 
φ11 – – − 0.043 0.035 – – − 0.048 0.032 
γ20 0.050 0.062 0.027 0.050 0.002 0.050 0.003 0.051 
γ21 – – − 0.001 0.041 – – − 0.008 0.043 
α20 0.044 0.025 0.041 0.021 0.048 0.029 0.046 0.029 
α21 0.066 0.014 0.065 0.012 0.092 0.021 0.090 0.021 
β21 0.927 0.015 0.923 0.014 0.890 0.025 0.893 0.026 
φ21 – – 0.009 0.117 – – 0.057 0.098 
γ30 0.074 0.042 − 0.005 0.029 − 0.001 0.028 − 0.002 0.028 
γ31 – – 0.003 0.023 – – 0.001 0.024 
α30 0.018 0.010 0.009 0.005 0.002 0.010 0.002 0.010 
α31 0.052 0.015 0.064 0.019 0.109 0.032 0.108 0.031 
β31 0.940 0.012 0.929 0.012 0.893 0.018 0.894 0.018 
φ31 – – 0.016 0.031 – – 0.016 0.034 
ζ1 0.037 0.006 0.035 0.007 0.038 0.008 0.038 0.008 
θ1 0.952 0.009 0.950 0.012 0.945 0.013 0.944 0.013 
ξ11 – – − 0.039 0.015 – – − 0.041 0.015 
ln L − 5376.4 − 4592.9 − 4562.4 − 4558.4 

The in-sample period is from April 13, 2006, to April 9, 2010, γk0, γk1 are the parameters of the conditional mean equations, αk0, αk1, βk1, φk1 are the parameters of the 
univariate volatility models, k = 1, 2, 3 for oil, stocks and gold, respectively, ζ1, θ1, ξ11 are the parameters of the correlation part. SE means standard error, ln L is the 
logarithm of the likelihood function. 
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The results of the parameters estimation for the 10th, 50th, and 90th 
quantiles are given in Table 4. 

The increase of Google searches for “oil prices” causes the decrease of 
the covariance between oil and stock returns as well as stock and gold 
returns. On the other hand, the impact of ASVIt on the covariance be-
tween oil and gold returns is positive. The strongest influence of Google 
searches on the relationship between ETFs is observed for very high 
values of covariance (above the 90th quantile) between oil and stock 
returns, and it is negative. 

5.2. Comparison of variance forecasts 

In this section, we compare the forecasting performance of the four 
univariate models, which are used in the DCC models. The two models, i. 
e., GARCH and RGARCH, are based only on the historical prices of ETFs, 
whereas the other two, i.e., GARCH-X and RGARCH-X, also use Google 
searches. For the starting sample (i.e., April 13, 2006 to April 9, 2010), 
we estimate the parameters of the models and compute out-of-sample 
one-day-ahead forecasts of variance. Consecutively, we add one new 
observation to the estimation sample, while at the same time dropping 
the oldest observation, so we apply the rolling window approach. Af-
terwards, based on the new estimation sample, we re-estimate models 
and obtain forecasts. The procedure is repeated until we obtain forecasts 
for the ten-year and two-month period from April 12, 2010, to June 11, 
2020. 

The sum of squares of 5-min returns (the realized variance) is used as 
a proxy of the daily variance. The realized variance can be viewed as a 
standard approach in the literature (see e.g. Floros et al., 2020; 
Reschenhofer et al., 2020; Zhang et al., 2020; Kambouroudis et al., 
2021). We also applied 15-min returns instead of 5-min returns, and the 
conclusions are very similar to those given in the paper. The forecasts 

are evaluated based on two measures, namely, the mean squared error 
(MSE) and the mean absolute error (MAE). The statistical significance of 
the results is evaluated based on the test of superior predictive ability 
(SPA) of Hansen (2005) and the model confidence set (MCS) test of 
Hansen et al. (2011). The SPA test verifies whether each of the models is 
outperformed by any of the alternatives. The MCS test provides with the 
best forecasting models that belong to the so-called the model confi-
dence set with a certain probability. Table 5 presents the results from the 
MSE and MAE measures and the SPA and MCS tests. 

According to the MSE criterion and the SPA test, there are three 
models: GARCH-X, RGARCH and RGARCH-X, which are not out-
performed significantly by any of the alternatives. Moreover, these three 
models belong to the model confidence set. It means that forecasts of 
variance from the GARCH-X, RGARCH and RGARCH-X models are more 
accurate than forecasts from the standard GARCH model. At the same 
time, however, it is not possible to decisively point out the best fore-
casting model among them. According to the MAE measure, the fore-
casts based on two range-based models, namely the RGARCH and 
RGARCH-X, provide the most accurate forecasts. The obtained results 
do not clearly indicate whether the information from Google searches 
about “oil prices” increases the forecasting accuracy. On the one hand, 
such information improves volatility forecasts for the standard GARCH 
model, however, it has no significant influence on the RGARCH model. 
This means that including additional variable in a less-precise volatility 
model (GARCH) might seem to be important, but this additional variable 
might turn out not to be important once a more precise volatility model 
(RGARCH) is used. 

5.3. Comparison of covariance forecasts 

The main focus of the paper is the influence of Google searches on 
covariance forecasts, thus in this section, we compare out-of-sample 
one-day-ahead forecasts of covariance from the proposed DCC-X- 
RGARCH-X model with the three competing DCC models: DCC- 
GARCH, DCC-X-GARCH-X and DCC-RGARCH. We use the same esti-
mation and forecasting samples as for the variances analysis in Section 
5.2. The sum of products of 5-min returns is employed as a proxy of the 
daily covariance for the evaluation of the forecasts. The realized 

Table 4 
Quantile regression models of the realized covariance on the lagged ASVIt.  

Covariance of 
ETFs 

γ0(τ) s 
(γ0(τ)) 

p- 
value 

γ1(τ) s 
(γ1(τ)) 

p- 
value 

10th quantile 
Oil-stocks − 0.189 0.021 0.000 − 0.125 0.016 0.000 
Gold-oil 0.007 0.011 0.515 0.033 0.012 0.005 
Stocks‑gold − 0.219 0.029 0.000 − 0.025 0.021 0.243  

50th quantile 
Oil-stocks 0.183 0.021 0.000 − 0.097 0.018 0.000 
Gold-oil 0.335 0.013 0.000 0.059 0.010 0.000 
Stocks‑gold 0.071 0.008 0.000 − 0.020 0.007 0.003  

90th quantile 
Oil-stocks 2.074 0.178 0.000 − 0.445 0.073 0.000 
Gold-oil 1.269 0.078 0.000 0.004 0.058 0.942 
Stocks‑gold 0.584 0.031 0.000 − 0.059 0.025 0.019 

The in-sample period is from April 13, 2006, to April 9, 2010, the realized 
covariance is estimated as the sum of products of 5-min returns, γ0(τ), γ1(τ) are 
the parameters of the regression (Eq. (13)), s(γ0(τ)), s(β1(τ)) are standard errors 
calculated using the Markov chain marginal bootstrap method. 

Table 5 
Evaluation of variance forecasts for the analyzed ETFs.  

Model Forecast evaluation criteria 

MSE SPA 
p-value 

MCS 
p-value 

MAE SPA 
p-value 

MCS 
p-value 

GARCH 47.732 0.006 0.001 1.597 0.000 0.000 
GARCH-X 31.321 0.126 0.237* 0.722 0.029 0.060 
RGARCH 29.378 0.837 1.000* 0.690 0.676 0.858* 
RGARCH-X 29.387 0.600 0.614* 0.690 0.795 1.000* 

The evaluation period is April 12, 2010, to June 11, 2020, the realized variance 
is used as a proxy of variance and estimated as the sum of squares of 5-min 
returns. 

* indicates that models belong to the model confidence set with a confidence 
level of 0.90. 

Table 3 
Results of the Rivers-Vuong and Clarke tests for model selection.  

Tested models RV statistic RV  
p-value 

Clarke statistic Clarke  
p-value 

DCC-X-GARCH-X vs DCC-GARCH 23.229 0.000 38.660 0.000 
DCC-RGARCH vs DCC-GARCH 23.224 0.000 38.894 0.000 
DCC-X-RGARCH-X vs DCC-GARCH 23.020 0.000 38.425 0.000 
DCC-RGARCH vs DCC-X-GARCH-X 5.819 0.000 12.473 0.000 
DCC-X-RGARCH-X vs DCC-X-GARCH-X 7.076 0.000 13.982 0.000 
DCC-X-RGARCH-X vs DCC-RGARCH 2.213 0.013 1.777 0.038 

The in-sample period is from April 13, 2006, to April 9, 2010. The RV (Rivers-Vuong) and Clarke are test statistics for model selection, where comparisons are made 
with the benchmark model (the second model in a pair). A low p-value means that the first model in a pair is superior to the second model. 
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covariance approach is commonly seen in the literature (see e.g. Laurent 
et al., 2013; Fiszeder et al., 2019; Gkillas et al., 2021b). As in the pre-
vious section, for 15-min returns we obtain similar results. In order to 
save space, we present only those for 5-min returns. Once again, we use 
the same evaluation measures and tests to evaluate forecasts as for 
variance. The forecasting performance results are presented in Table 6. 

The SPA test results indicate that the only model which is not out-
performed significantly (at the 10% significance level) by any of the 
alternatives is the DCC-X-RGARCH-X. According to the results of the 
MCS test, only the DCC-X-RGARCH-X model belongs to the model con-
fidence set. The forecasting superiority of the proposed model does not 
depend on the type of loss function. Moreover, information from Google 
searches about “oil prices” increases the forecasting accuracy for both 
the standard DCC-GARCH model and the DCC-RGARCH model. The 
DCC-X-GARCH-X more accurately forecasts covariance than the DCC- 
RGARCH model. It means that information from Google searches is 
more important for covariance forecasting than the application of the 
univariate range-based volatility model. However, the best choice is to 
use the more precise volatility model (RGARCH) and improve it further 
with information from Google searches. 

6. Robustness check of the COVID-19 influence 

The outbreak of the COVID-19 pandemic had a huge impact on the 
oil market (see e.g. Bourghelle et al., 2021; Jia et al., 2021; Le et al., 
2021). Lockdowns, travel restrictions, and economic turbulence led to 
the oil price crash in 2020. On April 20, 2020, the West Texas Inter-
mediate crude oil price dropped to negative levels for the first time in 
history. Fear connected with the COVID-19 pandemic also revealed 
excess Google’s search volume (see Lyócsa et al., 2020). The period of 
extreme market uncertainty coincided with the period of investors 
increased attention to coronavirus events. After the outbreak of the 
COVID-19 pandemic ΔASVIt for the search words “oil prices” took huge 
values that had never been seen before (see Fig. 1). Such outliers may 
cause bias on the usual maximum likelihood estimator of the parameters 
of GARCH models and the estimated volatilities. They can lead also to a 
considerable deterioration of the forecasting accuracy (Catalán and 
Trívez, 2007; Trucíos and Hotta, 2015). To check the robustness of our 
forecasting results to the COVID-19 crisis we perform the analysis for the 
shorter period not covering the COVID-19 pandemic. The results are 
presented in Tables 7 and 8 for variance and covariance forecasts, 
respectively. 

According to both MSE and MAE criteria and both SPA and MCS tests 
the forecast of variance from the RGARCH and RGARCH-X models are 
the most accurate. The information from Google searches about “oil 
prices” increases the accuracy of variance forecasts but only for the 
standard GARCH model. 

According to both MSE and MAE criteria and both SPA and MCS 
tests, the covariance forecasts from the DCC-X-RGARCH-X model are the 
most precise. The information from Google searches about “oil prices” 

increases the accuracy of covariance forecasts for both the standard 
DCC-GARCH model and the DCC-RGARCH model. It means that the 
main conclusions of the research remain unchanged, irrespective of 
whether the COVID-19 crisis is included in the analysis or not. 

7. Conclusions 

The relation between investor attention and financial markets has 
recently attracted a lot of interest. Google’s search volume index is 
considered an important proxy for the attention and sentiment of in-
vestors. Such information is important not only for the stock market but 
also for the commodity market, especially for the oil market. We analyze 
the influence of attention to oil prices, measured by Google searches for 
the term “oil prices”, on variances and covariances of three exchange- 
traded funds representing oil, the stock market, and gold. 

For this purpose, we introduce a new DCC-X-RGARCH-X model. It is 
an extension of the DCC-RGARCH model of Fiszeder et al. (2019) which 
incorporates exogenous variables in the equations of conditional means, 
variances, and covariances. We show in the in-sample analysis that 
attention to oil prices does not influence the return and volatility of oil, 
gold, and the stock market but does have a significant impact on the 
covariance of their returns. The rise of interest in the phrase “oil prices” 
induces the opposite reaction of stocks to oil and gold. On the other hand, 
the increase of Google searches causes similar changes between oil and 
gold returns. The proposed DCC-X-RGARCH-X model describes the dy-
namics of oil, gold and the stock market better than competing models. 

In the out-of-sample analysis, the influence of Google searches for the 
phrase “oil prices” on the accuracy of variance forecasts depends on the 
considered volatility model. Such information improves volatility fore-
casts for the standard GARCH model, however, it has no significant in-
fluence on the more precise RGARCH model. On the other hand, the 
models which incorporate Google searches for the phrase “oil prices” 
better forecast covariance than the standard models based exclusively 
on the past returns of series. The DCC-X- RGARCH-X model outperforms 
other considered multivariate volatility models, and this forecasting 

Table 6 
Evaluation of covariance forecasts for the analyzed ETFs.  

Model Forecast evaluation criteria 

MSE SPA 
p-value 

MCS 
p-value 

MAE SPA 
p-value 

MCS 
p-value 

DCC-GARCH 1.427 0.026 0.010 0.395 0.000 0.000 
DCC-X-GARCH-X 0.452 0.059 0.041 0.220 0.001 0.000 
DCC-RGARCH 0.659 0.001 0.010 0.329 0.000 0.000 
DCC-X-RGARCH-X 0.381 0.942 1.000* 0.212 0.527 1.000* 

The evaluation period is April 12, 2010, to June 11, 2020, the realized covari-
ance is used as a proxy of covariance and estimated as the sum of products of 5- 
min returns. 

* indicates that models belong to the model confidence set with a confidence 
level of 0.90. 

Table 7 
Evaluation of variance forecasts for the period without the COVID-19 turmoil.  

Model Forecast evaluation criteria 

MSE SPA 
p-value 

MCS 
p-value 

MAE SPA 
p-value 

MCS 
p-value 

GARCH 3.107 0.000 0.000 1.127 0.000 0.000 
GARCH-X 0.987 0.002 0.002 0.496 0.000 0.000 
RGARCH 0.883 0.386 0.709* 0.462 0.278 0.566* 
RGARCH-X 0.882 0.614 1.000* 0.462 0.614 1.000* 

The evaluation period is April 12, 2010, to December 31, 2019, the realized 
variance is used as a proxy of variance and estimated as the sum of squares of 5- 
min returns. 

* indicates that models belong to the model confidence set with a confidence 
level of 0.90. 

Table 8 
Evaluation of covariance forecasts for the period without the COVID-19 turmoil.  

Model Forecast evaluation criteria 

MSE SPA 
p-value 

MCS 
p-value 

MAE SPA 
p-value 

MCS 
p-value 

DCC-GARCH 0.285 0.000 0.000 0.327 0.000 0.000 
DCC-X-GARCH-X 0.131 0.007 0.005 0.179 0.000 0.000 
DCC-RGARCH 0.228 0.000 0.000 0.281 0.000 0.000 
DCC-X-RGARCH-X 0.123 0.536 1.000* 0.172 0.513 1.000* 

The evaluation period is April 12, 2010, to December 31, 2019, the realized 
covariance is used as a proxy of covariance and estimated as the sum of products 
of 5-min returns. 

* indicates that models belong to the model confidence set with a confidence 
level of 0.90. 
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superiority is robust to the type of loss function and the inclusion of the 
COVID-19 crisis. 

Altogether, our results show the importance of investor attention to 
oil prices as a factor influencing the covariance of oil returns with the 
stock market returns and with gold returns. In addition, it also improves 
the standard GARCH model for oil return volatility. 
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