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A B S T R A C T

The dynamic conditional correlation (DCC) model by Engle (2002) is one of the most popular
multivariate volatility models. This model is based solely on closing prices. It has been
documented in the literature that the high and low prices of a given day can be used to obtain
an efficient volatility estimation. We therefore suggest a model that incorporates high and low
prices into the DCC framework. We conduct an empirical evaluation of this model on three
datasets: currencies, stocks, and commodity exchange traded funds. Regardless of whether we
consider in-sample fit, covariance forecasts or value-at-risk forecasts, our model outperforms
not only the standard DCC model, but also an alternative range-based DCC model.

1. Introduction

Models that can describe the dynamic properties of two or more asset returns play an important role in financial econometrics.
Multivariate volatility models have been used to understand and predict the temporal dependence in second order moments of asset
returns. These models can explain how covariances change over time and therefore describe temporal dependencies among assets.
Such relations are vital in many financial applications, such as asset pricing, portfolio optimization, risk management, the estimation
of systemic risk in banking, value-at-risk estimation, asset allocation and many others.

One of the most popular multivariate volatility models is the dynamic conditional correlation (DCC) model introduced
independently by Engle (2002) and Tse and Tsui (2002). The latter representation however has attracted considerably less interest
in the literature. The advantages of the DCC model are the positive definiteness of the conditional covariance martices and the
ability to describe time-varying conditional correlations and covariances in a parsimonious way. The parameters of the DCC model
can be estimated in two stages, which makes this approach relatively simple and possible to apply even for very large portfolios.
The DCC model has become extremely popular and has been widely applied and modified (e.g. Heaney and Sriananthakumar, 2012;
Lehkonen and Heimonen, 2014; Bouri et al., 2017; Bernardi and Catania, 2018; Dark, 2018; Karanasos et al., 2018).

Most volatility models are return-based models, i.e. they are estimated on returns, which are calculated based only on closing
prices. Meanwhile, the use of daily low and high prices leads to more accurate estimates and forecasts of variances (see e.g. Chou,
2005; Brandt and Jones, 2006; Lin et al., 2012; Fiszeder and Perczak, 2016; Molnár, 2016) and covariances (see e.g. Chou et al.,
2009; Fiszeder, 2018). Daily low and high prices are almost always available alongside closing prices in financial series. Therefore,
making use of them in volatility models is very important from a practical viewpoint. DCC models formulated with the usage of
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low and high prices have already been proposed in the literature, including the range-based DCC by Chou et al. (2009) and the
range-based regime-switching DCC by Su and Wu (2014). These models, however, are based on modelling the time evolution of
price range and it is not possible to compare them directly with the return-based DCC model. We propose a DCC model constructed
using the Range-GARCH model by Molnár (2016), which is formulated with the usage of low and high prices but also based on
returns calculated from closing prices.

Our contribution is threefold. First, we construct a new specification of the DCC model based on the Range-GARCH model by
Molnár (2016), which we refer to as the DCC-Range-GARCH model (denoted by DCC-RGARCH). The model itself is very similar to
the DCC model by Engle (2002). Squared errors in the univariate GARCH model are replaced by the Parkinson (1980) volatility
estimator, but the parametrization of the covariance matrix remains the same. Second, we show using low and high prices in the
formulation of the DCC model improves the estimation of the covariance matrix of returns and increases the accuracy of covariance
and VaR forecasts based on this model, compared with the standard DCC model based on closing prices. Since both models, DCC
and DCC-RGARCH, share the same structure in the correlation component, achieving more precise volatility estimates improves the
covariance forecasts. Third, we demonstrate that covariance forecasts based on our proposed model are more accurate than those
obtained using the range-based DCC model by Chou et al. (2009). That is an important conclusion, because the range-based DCC
model is also formulated using low and high prices and is the main competitor for the DCC-RGARCH model in this class of models.

The rest of the paper is organized in the following way. Section 2 provides a description of applied models and methods. Section 3
presents data: three currency pairs -EUR/USD, USD/JPY and GBP/USD, three commodity exchange traded funds (ETFs) - United
States Oil Fund, United States Natural Gas Fund and Energy Select Sector SPDR Fund and five U.S. stocks - Amazon, Apple, Goldman
Sachs, Google and IBM. In Section 4.1 the parameters of the return-based DCC, range-based DCC and DCC-RGARCH models are
estimated and compared. Section 4.2 evaluates the forecasts of the variance of returns from the GARCH, CARR and RGARCH models.
In Section 4.3 the accuracy of covariance forecasts based on the DCC-GARCH and DCC-CARR models is compared with the forecasts
from the DCC-RGARCH model. Section 4.4 evaluates the VaR forecasts based on all considered DCC models. Section 5 concludes.

2. Theoretical background

2.1. The DCC-GARCH model

In this paper we extend the DCC model by Engle (2002) by introducing the range (the difference between low and high prices)
to the model. First, we present the standard DCC model based on closing prices. In order to better distinguish this model from its
competitors used in the paper, which are based on different univariate models, we will refer to it as the DCC-GARCH model.

Let us assume that ϵ𝑡 (𝑁 × 1 vector) is the innovation process for the conditional mean (or in a particular case the multivariate
return process) and can be written as:

ε𝑡||𝜓𝑡−1 ∼ 𝑁𝑜𝑟𝑚𝑎𝑙 (0, 𝐜𝐨𝐯𝑡), (1)

where 𝜓𝑡−1 is the set of all information available at time 𝑡− 1, Normal is the multivariate normal distribution and 𝐜𝐨𝐯𝑡 is the 𝑁 ×𝑁
symmetric conditional covariance matrix.

The DCC(𝑃 ,𝑄)-GARCH(𝑝, 𝑞) model by Engle (2002) can be presented as:

𝐜𝐨𝐯𝑡 = 𝐃𝑡𝐜𝐨𝐫𝑡𝐃𝑡, (2)

𝐜𝐨𝐫𝑡 = 𝐐∗−1
𝑡 𝐐𝑡𝐐∗−1

𝑡 , (3)

𝐐𝑡 =

(

1 −
𝑄
∑

𝑖=1
𝜁𝑖 −

𝑃
∑

𝑗=1
𝜃𝑗

)

𝐒 +
𝑄
∑

𝑖=1
𝜁𝑖(𝐳𝑡−𝑖𝐳′𝑡−𝑖) +

𝑃
∑

𝑗=1
𝜃𝑗𝐐𝑡−𝑗 , (4)

where 𝐃𝑡 = diag(ℎ1∕21𝑡 , ℎ
1∕2
2𝑡 … , ℎ1∕2𝑁𝑡 ), conditional variances ℎ𝑘𝑡 (for 𝑘 = 1, 2,… , 𝑁) are described as univariate GARCH models

(Eqs. (5)–(6)), 𝐳𝑡 is the standardized 𝑁 ×1 residual vector assumed to be serially independently distributed given as 𝐳𝑡 = 𝐃−1
𝑡 ε𝑡, 𝐜𝐨𝐫𝑡

is the time varying 𝑁 ×𝑁 conditional correlation matrix of 𝐳𝑡, 𝐒 is the unconditional 𝑁 ×𝑁 covariance matrix of 𝐳𝑡 (according to
Engle, 2002) and 𝐐∗

𝑡 is the diagonal 𝑁 ×𝑁 matrix composed of the square root of the diagonal elements of 𝐐𝑡. The parameters 𝜁𝑖
(for 𝑖 = 1, 2,… , 𝑄), 𝜃𝑗(for 𝑗 = 1, 2,… , 𝑃 ) are nonnegative and satisfy the condition ∑𝑄

𝑖=1 𝜁𝑖 +
∑𝑃
𝑗=1 𝜃𝑗 < 1.

The univariate GARCH(𝑝, 𝑞) model applied in the DCC-GARCH model can be written as:

𝜀𝑘𝑡||𝜓𝑡−1 ∼ 𝑁𝑜𝑟𝑚𝑎𝑙 (0, ℎ𝑘𝑡), 𝑘 = 1, 2,… , 𝑁, (5)

ℎ𝑘𝑡 = 𝛼𝑘0 +
𝑞
∑

𝑖=1
𝛼𝑘𝑖𝜀

2
𝑘 𝑡−𝑖 +

𝑝
∑

𝑗=1
𝛽𝑘𝑗ℎ𝑘 𝑡−𝑗 , (6)

where 𝛼𝑘0 > 0, 𝛼𝑘𝑖 ≥ 0, 𝛽𝑘𝑗 ≥ 0 (for 𝑘 = 1, 2,… , 𝑁 ; 𝑖 = 1, 2,… , 𝑞; 𝑗 = 1, 2,… , 𝑝), weaker conditions for non-negativity of the conditional
variance can be assumed (see Nelson and Cao, 1992). The requirement for covariance stationarity of 𝜀𝑘𝑡 is ∑𝑞

𝑖=1 𝛼𝑘𝑖 +
∑𝑝
𝑗=1 𝛽𝑘𝑗 < 1.

A nice feature of the DCC-GARCH model is that its parameters can be estimated by the quasi-maximum likelihood method using
a two-stage approach (see Engle and Sheppard, 2001). Let the parameters of the model Θ be written in two groups Θ′ = (Θ′

1,Θ′
2),
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where Θ1 is the vector of parameters of conditional means and variances and Θ2 is the vector of parameters of the correlation part
of the model. The log-likelihood function can be written as the sum of two parts:

𝐿(Θ) = 𝐿𝑉 𝑜𝑙(Θ1) + 𝐿𝐶𝑜𝑟𝑟(Θ2
|

|

Θ1), (7)

where 𝐿𝑉 𝑜𝑙(Θ1) represents the volatility part:

𝐿𝑉 𝑜𝑙(Θ1) = −1
2

𝑛
∑

𝑡=1

(

𝑁 ln(2𝜋) + 𝑙𝑛 |
|

𝐃𝑡||
2 + ε′𝑡𝐃−2

𝑡 ε𝑡
)

, (8)

while 𝐿𝐶𝑜𝑟𝑟(Θ2
|

|

Θ1) can be viewed as the correlation component:

𝐿𝐶𝑜𝑟𝑟(Θ2
|

|

Θ1) = −1
2

𝑛
∑

𝑡=1

(

ln |
|

𝐜𝐨𝐫𝑡|| + 𝐳′𝑡𝐜𝐨𝐫−1𝑡 𝐳𝑡 − 𝐳′𝑡𝐳𝑡
)

. (9)

𝐿𝑉 𝑜𝑙(Θ1) can be written as the sum of log-likelihood functions of 𝑁 univariate GARCH models:

𝐿𝑉 𝑜𝑙(Θ1) = −1
2

𝑁
∑

𝑘=1

(

𝑛 ln(2𝜋) +
𝑛
∑

𝑡=1

(

𝑙𝑛(ℎ𝑘𝑡) +
𝜖2𝑘𝑡
ℎ𝑘𝑡

))

. (10)

This means that in the first stage the parameters of univariate GARCH models can be estimated separately for each of the assets
and the estimates of ℎ𝑘𝑡 can be obtained. In the second stage residuals transformed by their estimated standard deviations are used
to estimate the parameters of the correlation part (Θ2) conditioning on the parameters estimated in the first stage (Θ̂1).

2.2. The CARR model

The second benchmark to compare with our new model is the range-based DCC model. This is based on the CARR model by
Chou (2005), which we describe now.

Let assume that 𝐻𝑡 and 𝐿𝑡 are high and low prices over a fixed period such as day, week or month and the observed price range
is given as 𝑅𝑡 = 𝑙𝑛

(

𝐻𝑡
)

− 𝑙𝑛
(

𝐿𝑡
)

. The CARR(𝑝, 𝑞) model can be described as:

𝑅𝑡 = 𝜆𝑡𝑢𝑡, (11)

𝑢𝑡||𝜓𝑡−1 ∼ exp
(

1, 𝜉𝑡
)

, (12)

𝜆𝑡 = 𝛼0 +
𝑞
∑

𝑖=1
𝛼𝑖𝑅𝑡−𝑖 +

𝑝
∑

𝑗=1
𝛽𝑗𝜆𝑡−𝑗 , (13)

where 𝜆𝑡 is the conditional mean of the range and 𝑢𝑡 is the disturbance term.
The exponential distribution is a natural choice for the conditional distribution of 𝑢𝑡 because it takes positive values. To ensure the
positivity of 𝜆𝑡 the parameters of the CARR model have to meet conditions analogous to those in the GARCH model (see Nelson and
Cao, 1992). The process is covariance stationary if the following condition is met:

𝑞
∑

𝑖=1
𝛼𝑖 +

𝑝
∑

𝑗=1
𝛽𝑗 < 1. (14)

It is worth emphasizing that the CARR model describes the dynamics of the conditional mean of the price range, not the conditional
variance of returns as in the case of the GARCH model.

The parameters of the CARR model can be estimated by the quasi-maximum likelihood method. The log-likelihood function can
be written as:

𝐿(ς) = −
𝑛
∑

𝑡=1

(

ln 𝜆𝑡 +
𝑅𝑡
𝜆𝑡

)

, (15)

where ς is a vector containing unknown parameters of the model. The estimators obtained by the quasi-maximum likelihood method
are consistent (see Engle and Russell, 1998; Engle, 2002; Chou, 2005).

2.3. The DCC-CARR model

In this paper the new DCC-RGARCH model is compared not only with the DCC-GARCH model, formulated on closing prices, but
also with the range-based DCC model which, like the proposed model, is formulated using low and high prices. Chou et al. (2009)
combined the CARR model by Chou (2005) with the DCC model by Engle (2002) to propose the range-based DCC model, which
we refer to as the DCC-CARR model in this paper. The CARR model describes the dynamics of the conditional mean of the price
range, and so in order to estimate values of the conditional standard deviation of returns the conditional price range has to be scaled
according to the formula: 𝜆∗𝑘𝑡 = adj𝑘𝜆𝑘𝑡 for 𝑘 = 1, 2,… , 𝑁 , where adj𝑘 = 𝜎𝑘∕𝜆𝑘. The scaling factor adj𝑘 is estimated as the quotient of
unconditional standard deviation of returns by the sample mean of the conditional range.

The DCC(𝑃 ,𝑄)-CARR(𝑝, 𝑞) model can be expressed as:

ε𝑡||𝜓𝑡−1 ∼ 𝑁𝑜𝑟𝑚𝑎𝑙 (0, 𝐜𝐨𝐯𝑡), (16)
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𝐜𝐨𝐯𝑡 = 𝐃𝑡𝐜𝐨𝐫𝑡𝐃𝑡, (17)

𝐜𝐨𝐫𝑡 = 𝐐∗−1
𝑡 𝐐𝑡𝐐∗−1

𝑡 , (18)

𝐐𝑡 =

(

1 −
𝑄
∑

𝑖=1
𝜁𝑖 −

𝑃
∑

𝑗=1
𝜃𝑗

)

𝐒 +
𝑄
∑

𝑖=1
𝜁𝑖(𝐳𝐶𝐴𝑅𝑅𝑡−𝑖 (𝐳𝐶𝐴𝑅𝑅𝑡−𝑖 )′) +

𝑃
∑

𝑗=1
𝜃𝑗𝐐𝑡−𝑗 , (19)

where 𝐃𝑡 = diag
(

𝜆∗1𝑡, 𝜆
∗
2𝑡,… , 𝜆∗𝑁𝑡

)

, 𝐳𝐶𝐴𝑅𝑅𝑡 is the standardized 𝑁 × 1 residual vector which contains the standardized residuals 𝑧CARR
𝑘𝑡

calculated from the CARR model (Eqs. (11)–(13)) as 𝑧CARR
𝑘𝑡 = 𝜀𝑘𝑡∕𝜆∗𝑘𝑡, the other variables are defined in the same way as in the

DCC-GARCH model.
The parameters of the DCC-CARR model can be estimated by the quasi-maximum likelihood method using a two-stage approach.

The log-likelihood function can be written as the sum of two parts, the volatility part and the correlation part:

𝐿𝐷𝐶𝐶−𝐶𝐴𝑅𝑅(Θ) = 𝐿𝐷𝐶𝐶−𝐶𝐴𝑅𝑅𝑉 𝑜𝑙 (Θ1) + 𝐿𝐷𝐶𝐶−𝐶𝐴𝑅𝑅𝐶𝑜𝑟𝑟 (Θ2
|

|

Θ1), (20)

𝐿𝐷𝐶𝐶−𝐶𝐴𝑅𝑅𝑉 𝑜𝑙 (Θ1) = −1
2

𝑁
∑

𝑘=1

(

𝑛 ln(2𝜋) +
𝑛
∑

𝑡=1

(

2𝑙𝑛(𝜆∗𝑘𝑡) +
𝜖2𝑘𝑡
𝜆∗2𝑘𝑡

))

(21)

𝐿𝐷𝐶𝐶−𝐶𝐴𝑅𝑅𝐶𝑜𝑟𝑟 (Θ2
|

|

Θ1) = −1
2

𝑛
∑

𝑡=1

(

ln |
|

𝐜𝐨𝐫𝑡|| + (𝒛𝐶𝐴𝑅𝑅𝑡 )′𝐜𝐨𝐫−1𝑡 𝒛𝐶𝐴𝑅𝑅𝑡 − (𝒛𝐶𝐴𝑅𝑅𝑡 )′𝒛𝐶𝐴𝑅𝑅𝑡
)

. (22)

This means that in the first stage the parameters of the CARR models can be estimated separately for each of the assets. In the
second stage the standardized residuals 𝑧CARR

𝑘𝑡 are used to maximize Eq. (22) in order to estimate the parameters of the correlation
component.

2.4. The Range-GARCH model

In the new specification of the DCC-RGARCH model we use the Range-GARCH model introduced by Molnár (2016). The
RGARCH(𝑝, 𝑞) model can be formulated as:

𝜀𝑡||𝜓𝑡−1 ∼ 𝑁𝑜𝑟𝑚𝑎𝑙 (0, ℎ𝑡), (23)

ℎ𝑡 = 𝛼0 +
𝑞
∑

𝑖=1
𝛼𝑖𝜎

2
𝑃 𝑡−𝑖 +

𝑝
∑

𝑗=1
𝛽𝑗ℎ𝑡−𝑗 , (24)

where 𝜎2𝑃 𝑡 is the Parkinson (1980) estimator calculated as 𝜎2𝑃 𝑡 = [𝑙𝑛(𝐻𝑡∕𝐿𝑡)]2∕(4 ln 2).
In this formulation other variance estimators based on low, high and opening or closing prices, like the Garman and Klass (1980) or
Rogers and Satchell (1991) estimators, can be applied instead of the Parkinson estimator. For an overview of range-based volatility
estimators see Molnár (2012), Fiszeder and Perczak (2013).

To ensure the positivity of ℎ𝑡 the parameters of the RGARCH model must meet conditions analogous to those in the GARCH
model (see Nelson and Cao, 1992). The RGARCH process is covariance stationary if the following condition is met:

𝑞
∑

𝑖=1
𝛼𝑖 +

𝑝
∑

𝑗=1
𝛽𝑗 < 1. (25)

It is worth emphasizing that the RGARCH model describes the dynamics of the conditional variance of returns, not the conditional
mean of the price range, as in the case of the CARR model. The parameters of the RGARCH model can be estimated by the
quasi-maximum likelihood method and the likelihood function is the same as in the return-based GARCH model.

2.5. The DCC-Range-GARCH model

In this subsection we introduce our new DCC-Range-GARCH model (denoted by DCC-RGARCH). The DCC(𝑃 ,𝑄)-RGARCH(𝑝, 𝑞)
model can be presented as:

ε𝑡||𝜓𝑡−1 ∼ 𝑁𝑜𝑟𝑚𝑎𝑙 (0, 𝐜𝐨𝐯𝑡), (26)

𝐜𝐨𝐯𝑡 = 𝐃𝑡𝐜𝐨𝐫𝑡𝐃𝑡, (27)

𝐜𝐨𝐫𝑡 = 𝐐∗−1
𝑡 𝐐𝑡𝐐∗−1

𝑡 , (28)

𝐐𝑡 =

(

1 −
𝑄
∑

𝑖=1
𝜁𝑖 −

𝑃
∑

𝑗=1
𝜃𝑗

)

𝐒 +
𝑄
∑

𝑖=1
𝜁𝑖(𝐳𝑅𝐺𝐴𝑅𝐶𝐻𝑡−𝑖 (𝐳𝑅𝐺𝐴𝑅𝐶𝐻𝑡−𝑖 )′) +

𝑃
∑

𝑗=1
𝜃𝑗𝐐𝑡−𝑗 , (29)
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where 𝐃𝑡 = diag
(

(ℎ𝑅𝐺𝐴𝑅𝐶𝐻1𝑡 )1∕2, (ℎ𝑅𝐺𝐴𝑅𝐶𝐻2𝑡 )1∕2 … , (ℎ𝑅𝐺𝐴𝑅𝐶𝐻𝑁𝑡 )1∕2
)

, conditional variances ℎ𝑅𝐺𝐴𝑅𝐶𝐻𝑘𝑡 (for 𝑘 = 1, 2,… , 𝑁) are described
as for the RGARCH model (Eqs. (23)–(24)), 𝐳𝑅𝐺𝐴𝑅𝐶𝐻𝑡 is the standardized 𝑁 × 1 residual vector which contains the standardized
residuals 𝑧RGARCH

𝑘𝑡 calculated from the RGARCH model as 𝑧RGARCH
𝑘𝑡 = 𝜀𝑘𝑡∕

(

ℎ𝑅𝐺𝐴𝑅𝐶𝐻𝑘𝑡
)1∕2, the other variables are defined in the same

way as in the DCC-GARCH model.
The parameters of the DCC-R-GARCH model can be estimated by the quasi-maximum likelihood method using a two-stage

approach. The log-likelihood function can be written as the sum of two parts, the volatility part and the correlation part:

𝐿𝐷𝐶𝐶−𝑅𝐺𝐴𝑅𝐶𝐻 (Θ) = 𝐿𝐷𝐶𝐶−𝑅𝐺𝐴𝑅𝐶𝐻𝑉 𝑜𝑙 (Θ1) + 𝐿𝐷𝐶𝐶−𝑅𝐺𝐴𝑅𝐶𝐻𝐶𝑜𝑟𝑟 (Θ2
|

|

Θ1), (30)

𝐿𝐷𝐶𝐶−𝑅𝐺𝐴𝑅𝐶𝐻𝑉 𝑜𝑙 (Θ1) = −1
2

𝑁
∑

𝑘=1

(

𝑛 ln(2𝜋) +
𝑛
∑

𝑡=1

(

𝑙𝑛(ℎ𝑘𝑡) +
𝜖2𝑘𝑡
ℎ𝑘𝑡

))

(31)

𝐿𝐷𝐶𝐶−𝑅𝐺𝐴𝑅𝐶𝐻𝐶𝑜𝑟𝑟 (Θ2
|

|

Θ1) = −1
2

𝑛
∑

𝑡=1

(

ln |
|

𝐜𝐨𝐫𝑡|| + (𝒛𝑅𝐺𝐴𝑅𝐶𝐻𝑡 )′𝐜𝐨𝐫−1𝑡 𝒛𝑅𝐺𝐴𝑅𝐶𝐻𝑡

−(𝒛𝑅𝐺𝐴𝑅𝐶𝐻𝑡 )′𝒛𝑅𝐺𝐴𝑅𝐶𝐻𝑡
)

, (32)

This means that in the first stage the parameters of univariate RGARCH models can be estimated separately for each of the assets.
In the second stage the standardized residuals 𝑧RGARCH

𝑘𝑡 are used to maximize Eq. (32) in order to estimate the parameters of the
correlation component.

3. Data

We apply the proposed model and its competitors to three different sets of data: three currency rates, three commodity exchange
traded funds and five stocks. The currency rates are the three most heavily traded currency pairs in the Forex market, namely:
EUR/USD, USD/JPY and GBP/USD.

The second set are three exchange-traded funds (ETF) listed on the New York Stock Exchange Arca, namely (the names given in
the brackets will be used later in tables): the United States Oil Fund (Oil), the United States Natural Gas Fund (Natural Gas) and the
Energy Select Sector SPDR Fund (Energy). Commodity exchange traded funds provide investors with the convenience of commodity
exposure without a commodity futures account. The first two ETFs offer exposure to a single commodity (oil/gas), whereas the third
ETF tracks the price and performance of the Standard and Poor’s Energy Select Sector Index.

The third set of data consists of five selected U.S. stocks, namely: Amazon, Apple, Goldman Sachs, Google and IBM. Since there
are many stocks that could be chosen for this purpose, we decided to follow CBOE and select the stocks for which CBOE calculates
implied volatility indices (even though implied volatility indices are not used in this paper).

We evaluate the models considered for daily data in the nine-year period from January 2, 2008, to December 30, 2016. This is
a relatively long period, which includes both very volatile periods – the collapse of Lehman Brothers, the worst phase of the global
financial crisis, the European sovereign debt crisis and Brexit – but also tranquil periods with low volatility.

The descriptive statistics for the percentage returns calculated as 𝑟𝑡 = 100 ln(𝑝𝑡∕𝑝𝑡−1), where 𝑝𝑡 is the closing price at time 𝑡,
are presented in Table 1. The means of returns are positive for stocks and the Energy Select Sector SPDR Fund and negative for
currencies and the other ETFs. The standard deviation of returns is significantly lower for currencies. Most distributions of returns
are asymmetric, and all display high leptokurtosis.

4. Results

We consider three DCC models in the analysis:
(1) The DCC-GARCH model by Engle (2002) summarized by Eqs. (1)–(6), where parameters are estimated based only on closing

prices.
(2) The DCC-CARR model by Chou et al. (2009), see Eqs. (16)–(19). In this specification the CARR model (Eqs. (11)–(13)) is

applied in the DCC model instead of the univariate GARCH model.
(3) The proposed DCC-RGARCH model summarized by Eqs. (26)–(29). In this specification the RGARCH model described by

Eqs. (23)–(24) is applied in the DCC model instead of the univariate GARCH model.
We also consider a DCC model using two asymmetric GARCH models, i.e. the EGARCH (Nelson, 1991) and GJR (Glosten et al.,

1993) models, instead of the standard GARCH model. These models are able to capture often-reported asymmetric responses to
positive and negative shocks in the conditional variance. However we find that covariance forecasts based on the DCC-EGARCH
and DCC-GJR models are not significantly better than forecasts from the DCC-GARCH model for any of the currencies and ETFs
considered, or for most stocks (the results are given in Tables A.1 and A.2 in the Appendix), and so we do not extend our models
to describe the effect of asymmetry in variance.

The considered exchange rates, ETFs and stocks are not cointegrated (according to the Johansen test). Mean equations for returns
are very simple: each mean equation is a constant, because in our data the sample return of any asset is not dependent on its own
past returns nor on the past returns of other assets.

We first compare the fit of the models estimated on the whole sample of data, and then compare the forecasts from these
models. We analyse forecasts of variances and forecasts of covariances separately, because models for variances already exist whereas
forecasting covariances is our main contribution.
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Table 1
Summary statistics of daily returns.

Assets Mean × 102 Minimum Maximum Standard deviation Skewness Excess kurtosis

Currency rates

EUR/USD −1.401 −2.554 3.503 0.657 0.116* 4.825*
JPY/USD −0.198 −5.448 3.779 0.692 −0.008 7.670*
GBP/USD −2.037 −8.322 2.870 0.641 −1.245* 17.043*

Exchange-traded funds

Oil −8.234 −11.439 9.199 2.286 −0.133* 5.256*
Natural Gas −15.146 −9.745 13.942 2.651 0.172* 4.173*
Energy 0.463 −19.033 18.051 1.965 −0.408* 15.390*

Stocks

Amazon 9.220 −13.640 23.768 2.482 0.548* 11.837*
Apple 6.631 −19.128 12.577 2.039 −0.499* 10.454*
Goldman Sachs 0.984 −22.022 23.245 2.538 0.054 18.504*
Google 3.658 −10.271 18.231 1.894 0.752* 14.891*
IBM 2.801 −8.799 11.035 1.443 −0.215* 8.928*

The sample period is January 2, 2008, to December 30, 2016.
*Indicates that the null hypothesis (the skewness or excess kurtosis is equal to zero) was rejected at the 10% significance level.

4.1. In-sample comparison of models

The parameters of the considered models are estimated using the quasi-maximum likelihood method. The results of the estimation
are presented in Tables 2–4 separately for exchange rates, ETFs and stocks.

The estimation of parameters for the GARCH, R-GARCH and CARR models is based on different kinds of data: on closing prices
for the first two models1 and on range data for the third model. However, for the DCC-CARR, which uses the CARR model, it is
possible to calculate the likelihood function based on the scaled conditional price range according to formula (21). Thanks to this,
it is possible to evaluate all the DCC models based on the whole likelihood function, including both the volatility and correlation
parts. In order to assess whether the differences between values of likelihood function are statistically significant, we apply the Rivers
and Vuong (2002) and Clarke (2007) tests for non-nested model selection. The values of the likelihood function are higher for the
DCC-RGARCH model than for the benchmark DCC-GARCH model for all analysed data sets, which means that the DCC-RGARCH
model better describes the considered time series. The results for the DCC-CARR model are ambiguous and depend on the type of
test applied.

The application of range data changes the parameter estimates for the considered models significantly. Specifically, the estimates
of the parameters 𝛼𝑘1 are much higher and the estimates of the parameters 𝛽𝑘1 much lower in the CARR and RGARCH models
compared with the GARCH model. This is important in terms of both modelling and forecasting volatility, because for the CARR
and RGARCH models the shocks in the previous period have a stronger impact on the current volatility than the impact you observe
for the GARCH model. Thus models formulated with range data respond more quickly to changing market conditions. Slow response
to abrupt changes in the market is widely cited as one of the greatest weaknesses of GARCH-type models formulated based on closing
prices (e.g. Andersen et al., 2003; Hansen et al., 2012).

Direct comparison of the parameters of the CARR model with the parameters of the GARCH and RGARCH models is, however,
difficult, because they describe different measures of volatility. The CARR model describes the dynamics of the conditional mean
of the price range, while the GARCH and RGARCH models describe the conditional variance of returns.

One can also notice that the sum of the estimates of the parameters 𝛼𝑘1 and 𝛽𝑘1 in the RGARCH model is higher than one for
ETFs and stocks. However, this does not mean that the analysed processes are covariance non-stationary. It results from the fact
that the Parkinson estimator underestimates the volatility of returns in the presence of opening jumps (such jumps do not occur in
the Forex market since it does not close overnight), causing an increase in the estimate of the parameter 𝛼𝑘1 (see Molnár, 2016).

On the other hand, there are no considerable differences between the considered models in the estimates of parameters for the
correlation component. Thus, the main differences in the behaviour of the time-varying covariances from those models results from
the usage of the different standardized residuals 𝑧𝑘𝑡, 𝑧CARR

𝑘𝑡 and 𝑧RGARCH
𝑘𝑡 in Eqs. (4), (19) and (29) of the DCC-GARCH, DCC-CARR

and DCC-RGARCH models, respectively.

4.2. Comparison of variance forecasts

In this section we compare the forecasting performance of the three univariate models, which are used in the DCC models. We
formulate out-of-sample one-day-ahead forecasts of variance based on the GARCH, CARR and RGARCH models, where parameters
are estimated separately each day based on a rolling sample of a fixed size of 500 (approximately a two-year period; the first

1 In the R-GARCH model, the Parkinson estimator with the high-low range is used as an explanatory variable but the likelihood function is formulated based
on closing prices.
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Table 2
Results of parameter estimation for currency rates.

Parameter DCC-GARCH DCC-CARR DCC-RGARCH

Estimate Std. error Estimate Std. error Estimate Std. error

𝛾10 −0.011 0.011 – – −0.019 0.011
𝛼10 0.001 0.001 0.007 0.003 0.002 0.002
𝛼11 0.037 0.006 0.093 0.012 0.052 0.013
𝛽11 0.960 0.006 0.901 0.013 0.943 0.015
𝛾20 −0.015 0.013 – – −0.005 0.012
𝛼20 0.006 0.004 0.019 0.007 0.010 0.006
𝛼21 0.055 0.019 0.134 0.023 0.133 0.040
𝛽21 0.933 0.024 0.847 0.029 0.843 0.046
𝛾30 −0.009 0.011 – – −0.016 0.010
𝛼30 0.003 0.002 0.006 0.003 0.004 0.002
𝛼31 0.076 0.030 0.110 0.014 0.116 0.049
𝛽31 0.921 0.026 0.883 0.014 0.871 0.041
𝜁1 0.044 0.006 0.048 0.007 0.044 0.006
𝜃1 0.922 0.011 0.923 0.012 0.921 0.011

ln L −5694.139 −5649.297 −5648.297
Rivers–Vuong – 2.796 (0.003) 2.563 (0.005)
Clarke – −2.028 (0.979) 6.414 (0.000)

The sample period is January 2, 2008, to December 30, 2016, the parameters 𝛾10, 𝛾20, 𝛾30 are constants, 𝛼k0 𝛼k1
𝛽k1 are the parameters of the univariate GARCH model (Eq. (6)), the CARR model (Eq. (13)) and the RGARCH
model (Eq. (24)), 𝑘 = 1, 2, 3 for EUR/USD, JPY/USD and GBP/USD, respectively, 𝜁1, 𝜃1 are the parameters of the
correlation part (Eqs. (4), (19) and (29) for the DCC-GARCH, DCC-CARR and DCC-RGARCH models, respectively),
ln L is the logarithm of the likelihood function, the Rivers–Vuong and Clarke are test statistics for model selection,
where comparisons are made with the DCC-GARCH model, p-values are given in brackets. A low p-value means
that the indicated model is superior to the benchmark DCC-GARCH model.

Table 3
Results of parameter estimation for exchange-traded funds.

Parameter DCC-GARCH DCC-CARR DCC-RGARCH

Estimate Std. error Estimate Std. error Estimate Std. error

𝛾10 −0.127 0.051 – – −0.127 0.051
𝛼10 0.090 0.034 0.049 0.015 0.111 0.052
𝛼11 0.056 0.009 0.096 0.011 0.154 0.026
𝛽11 0.932 0.011 0.887 0.014 0.897 0.018
𝛾20 −0.017 0.036 – – −0.055 0.035
𝛼20 0.020 0.011 0.017 0.007 0.031 0.022
𝛼21 0.065 0.014 0.140 0.017 0.236 0.069
𝛽21 0.933 0.014 0.854 0.019 0.864 0.039
𝛾30 0.058 0.026 – – 0.016 0.026
𝛼30 0.024 0.009 0.048 0.013 0.019 0.016
𝛼31 0.090 0.015 0.256 0.023 0.382 0.075
𝛽31 0.904 0.015 0.719 0.026 0.748 0.047
𝜁1 0.014 0.003 0.017 0.003 0.013 0.003
𝜃1 0.980 0.004 0.980 0.004 0.982 0.005

ln L −13 419.952 −13 445.131 −13 358.665
Rivers-Vuong – −0.553 (0.710) 3.143 (0.001)
Clarke – −11.344 (1.000) 4.117 (0.000)

The sample period is January 2, 2008, to December 30, 2016, the parameters 𝛾10, 𝛾20, 𝛾30 are constants, 𝛼k0 𝛼k1 𝛽k1
are the parameters of the univariate GARCH model (Eq. (6)), the CARR model (Eq. (13)) and the RGARCH model
(Eq. (24)), 𝑘 = 1, 2, 3 for Natural Gas, Oil and Energy, respectively, 𝜁1, 𝜃1 are the parameters of the correlation
part (Eqs. (4), (19) and (29) for the DCC-GARCH, DCC-CARR and DCC-RGARCH models, respectively). Ln L is the
logarithm of the likelihood function, the Rivers–Vuong and Clarke are test statistics for model selection, where
comparisons are made with the DCC-GARCH model, p-values are given in brackets. A low p-value means that
the indicated model is superior to the benchmark DCC-GARCH model.

in-sample period is from January 2, 2008 to December 31, 2009). We evaluate forecasts for the seven-year period from January 4,
2010, to December 30, 2016.

The sum of squares of 15-min returns (the realized variance) is used as a proxy of the daily variance. The forecasts from the
models are evaluated based on two primary measures, namely, the mean squared error (MSE) and the mean absolute error (MAE).
In order to evaluate the statistical significance of the results the Diebold–Mariano test (Diebold and Mariano, 1995) corrected for
small-sample bias (Harvey et al., 1997) is applied.

A pairwise comparison is performed and the results for the RGARCH model are presented with respect to the two benchmarks:
first the GARCH model and second the CARR model. The GARCH and CARR models are the most popular univariate volatility
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Table 4
Results of parameter estimation for stocks.

Parameter DCC-GARCH DCC-CARR DCC-RGARCH

Estimate Std. error Estimate Std. error Estimate Std. error

𝛾10 0.118 0.045 – – 0.119 0.043
𝛼10 0.023 0.039 0.057 0.019 0.400 0.138
𝛼11 0.014 0.010 0.187 0.024 0.396 0.087
𝛽11 0.982 0.016 0.793 0.028 0.684 0.071
𝛾20 0.155 0.038 – – 0.086 0.034
𝛼20 0.132 0.042 0.128 0.035 0.189 0.069
𝛼21 0.098 0.024 0.264 0.038 0.250 0.055
𝛽21 0.868 0.027 0.679 0.051 0.783 0.046
𝛾30 0.053 0.037 – – 0.029 0.033
𝛼30 0.062 0.047 0.064 0.017 0.063 0.036
𝛼31 0.115 0.063 0.241 0.030 0.243 0.054
𝛽31 0.879 0.062 0.734 0.034 0.821 0.037
𝛾40 0.055 0.035 – – 0.057 0.032
𝛼40 0.127 0.085 0.081 0.018 0.339 0.140
𝛼41 0.083 0.060 0.240 0.025 0.595 0.193
𝛽41 0.885 0.070 0.720 0.031 0.556 0.143
𝛾50 0.036 0.026 – – 0.019 0.024
𝛼50 0.126 0.041 0.061 0.032 0.134 0.033
𝛼51 0.124 0.037 0.221 0.048 0.404 0.065
𝛽51 0.814 0.046 0.741 0.058 0.663 0.049
𝜁1 0.003 0.001 0.006 0.002 0.003 0.000
𝜃1 0.993 0.003 0.989 0.004 0.991 0.001

ln L −21 205.733 −21 055.408 −20 920.942
Rivers-Vuong – 2.538 (0.006) 4.910 (0.000)
Clarke – −3.255 (0.999) 12.497 (0.000)

The sample period is January 2, 2008, to December 30, 2016, the parameters 𝛾10, 𝛾20, 𝛾30 are constants, 𝛼k0 𝛼k1
𝛽k1 are the parameters of the univariate GARCH model (Eq. (6)), the CARR model (Eq. (13)) and the RGARCH
model (Eq. (24)), 𝑘 = 1, 2, 3, 4, 5 for Amazon, Apple, Goldman Sachs, Google and IBM, respectively, 𝜁1, 𝜃1 are the
parameters of the correlation part (Eqs. (4), (19) and (29) for the DCC-GARCH, DCC-CARR and DCC-RGARCH
models, respectively), ln L is the logarithm of the likelihood function, the Rivers–Vuong and Clarke are test
statistics for model selection, where comparisons are made with the DCC-GARCH model, p-values are given in
brackets. A low p-value means that the indicated model is superior to the benchmark DCC-GARCH model.

models formulated based on returns constructed on closing prices and price range, respectively. The forecasting performance results
are presented in Tables 5 and 6 for the MSE and MAE criteria, respectively.

According to the MSE criterion, the forecasts of variance from the RGARCH model are more accurate for currencies and the
Energy Select Sector SPDR Fund. For the other ETFs and stocks, the results are mixed. However, there are large outliers in the
data set, which affect the MSE measure. Such outliers are present for ETFs and stocks (see e.g. minimum and maximum returns
in Table 1). A quite different picture emerges from the MAE criterion. According to this measure the best forecasts are formulated
based on the RGARCH (except Amazon and Apple stocks) and, in almost all cases, the higher forecasting accuracy of this model is
statistically significant at the 10% significance level (the exceptions are the GBP/USD currency pair and Google’s stock with respect
to the CARR benchmark model). The CARR and RGARCH models’ forecasting superiority over the GARCH model has already been
documented by Chou (2005) and Molnár (2016), respectively. Higher forecast accuracy based on the RGARCH model in comparison
to the CARR model has not previously been demonstrated in the literature.

In order to check the robustness of the results, we also consider 5-min returns instead of 15-min returns and three additional
evaluation measures (the coefficient of determination, the logarithmic loss function and the linear exponential loss function). The
results for the MSE and MAE criteria for 5-min returns are presented in Table A.3 in Appendix. The conclusions are very similar
to those presented for 15-min returns.

The first additional measure is the coefficient of determination from the Mincer–Zarnowitz regression. A proxy of volatility is
regressed on a constant and the forecast of volatility. It is a very simple and popular way to evaluate the forecasting performance
of volatility models (see e.g. Poon and Granger, 2003). The values of the coefficient of determination for the competing models are
presented in Table 7. These results are in accordance with those for the MSE measure.

To reduce the impact of outliers, we also use the logarithmic loss function. This is calculated similarly to the MSE measure,
but the logarithm of a volatility proxy and the logarithm of the volatility forecast are applied (see Pagan and Schwert, 1990). The
estimates of the logarithmic loss function are given in Table 8. These results are very similar to those for the MAE criterion and
indicate that the forecasts from the RGARCH model are superior.

Additionally, we apply a linear exponential loss function (LINEX). For the positive coefficient 𝑎 of the LINEX, the function is
approximately linear for over-prediction errors and exponential for under-prediction errors. This means that under-prediction errors
have a higher impact on the loss function than over-prediction errors. For the negative coefficient 𝑎 the situation is exactly the
opposite. The values of the LINEX function for 𝑎 = −1 and 𝑎 = 1 are presented in the Appendix in Tables A.4 and A.5 respectively.
The results for all currency rates indicate that the variance forecasts based on the RGARCH model are more accurate than the
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Table 5
Evaluation of variance forecasts: the MSE criterion.

Assets GARCH CARR RGARCH GARCH vs. RGARCH CARR vs. RGARCH

MSE P-value of DM test

Currency rates

EUR/USD 0.112 0.120 0.098 0.010 0.004
GBP/USD 0.811 1.134 0.560 0.062 0.197
JPY/USD 0.426 0.485 0.330 0.022 0.049

Exchange-traded funds

Energy 9.133 9.493 7.558 0.019 0.004
Oil 14.049 19.470 15.005 0.973 0.000
Natural Gas 22.402 26.507 23.383 0.960 0.000

Stocks

Amazon 164.230 183.148 181.768 0.978 0.313
Apple 122.262 94.508 98.246 0.177 0.857
Goldman Sachs 11.917 11.986 11.365 0.264 0.172
Google 50.899 58.700 58.730 0.760 0.521
IBM 11.586 13.727 13.208 0.834 0.069

The evaluation period is January 4, 2010, to December 30, 2016, the realized variance is used as a proxy of variance and estimated
as the sum of squares of 15-min returns. The lowest values of MSE are marked in bold. The p-values of the Diebold–Mariano
test are presented for pairs of models with respect to the two benchmarks: the GARCH and CARR models. A p-value lower than
the significance level means that the forecasts of variance from the RGARCH model are more accurate than the forecasts from
a benchmark model (here GARCH or CARR).

Table 6
Evaluation of variance forecasts: the MAE criterion.

Assets GARCH CARR RGARCH GARCH vs. RGARCH CARR vs. RGARCH

MAE P-value of DM test

Currency rates

EUR/USD 0.166 0.169 0.155 0.000 0.000
GBP/USD 0.167 0.161 0.147 0.000 0.165
JPY/USD 0.230 0.228 0.206 0.000 0.000

Exchange-traded funds

Energy 1.190 1.292 1.040 0.000 0.000
Oil 2.213 2.485 2.137 0.002 0.000
Natural Gas 3.233 3.527 3.198 0.095 0.000

Stocks

Amazon 3.704 3.265 3.322 0.000 0.974
Apple 2.410 2.220 2.263 0.011 0.915
Goldman Sachs 1.752 1.854 1.682 0.015 0.000
Google 2.001 1.861 1.844 0.013 0.172
IBM 1.064 1.043 1.007 0.003 0.000

The evaluation period is January 4, 2010, to December 30, 2016, the realized variance is used as a proxy of
variance and estimated as the sum of squares of 15-min returns. The lowest values of MAE are marked in bold.
The p-values of the Diebold–Mariano test are presented for pairs of models with respect to the two benchmarks:
the GARCH and CARR models. A p-value lower than the significance level means that the forecasts of variance
from the RGARCH model are more accurate than the forecasts from a benchmark model (here GARCH or CARR).

forecasts from the competing models. The outcomes for other assets are ambiguous, but they depend heavily on outliers. When the
highest 1% of values are excluded, the values of the LINEX loss function are much smaller and more often indicate the RGARCH
model as the best forecasting model.

4.3. Comparison of covariance forecasts

In this section, we compare out-of-sample one-day-ahead forecasts of covariance from the DCC-GARCH and DCC-CARR models
with the forecasts from the DCC-RGARCH model. We use the same estimation and forecasting samples as for variances in Section 4.2.
The sum of products of 15-min returns (the realized covariance) is employed as a proxy of the daily covariance for the evaluation
of the forecasts. We use the same evaluation measures as in the previous section. We perform a pairwise comparison by the
Diebold–Mariano test for the DCC-RGARCH model with respect to the two benchmarks: first the DCC-GARCH model and second the
DCC-CARR model.

The forecasting performance results for the covariance of returns are presented in Tables 9 and 10 for the MSE and MAE criteria,
respectively. For all analysed relations except the one between the United States Oil and United States Natural Gas Funds based
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Table 7
Evaluation of variance forecasts: the coefficient of determination.

Assets GARCH CARR RGARCH

Currency rates

EUR/USD 0.254 0.217 0.355
GBP/USD 0.305 0.034 0.513
JPY/USD 0.200 0.080 0.417

Exchange-traded funds

Energy 0.318 0.290 0.453
Oil 0.405 0.315 0.372
Natural Gas 0.253 0.138 0.216

Stocks

Amazon 0.307 0.084 0.100
Apple 0.089 0.395 0.302
Goldman Sachs 0.380 0.390 0.391
Google 0.244 0.141 0.149
IBM 0.378 0.128 0.154

The evaluation period is January 4, 2010, to December 30, 2016, the realized variance is used
as a proxy of variance and estimated as the sum of squares of 15-min returns. The highest values
of 𝑅2 are marked in bold.

Table 8
Evaluation of variance forecasts: the logarithmic loss function.

Assets GARCH CARR RGARCH

Currency rates

EUR/USD 0.326 0.332 0.294
GBP/USD 0.249 0.262 0.208
JPY/USD 0.487 0.479 0.404

Exchange-traded funds

Energy 0.485 0.552 0.357
Oil 0.617 0.631 0.532
Natural Gas 0.561 0.641 0.546

Stocks

Amazon 1.039 0.750 0.770
Apple 0.974 0.815 0.867
Goldman Sachs 0.594 0.605 0.557
Google 0.883 0.723 0.742
IBM 0.735 0.681 0.628

The evaluation period is January 4, 2010, to December 30, 2016, the realized variance is used
as a proxy of variance and estimated as the sum of squares of 15-min returns. The lowest values
of the logarithmic loss function are marked in bold.

on the MSE measure, the lowest values of loss functions are found for the DCC-RGARCH model. In most cases, this model’s higher
forecasting accuracy is statistically significant.2 In the MAE measure less weight is assigned to outliers and the results for this measure
clearly indicate that the DCC-RGARCH model is the best forecasting model.

The forecasts formulated based on the DCC-RGARCH are more precise than the forecasts from both the benchmark models.
The first benchmark, DCC-GARCH, is based on returns formulated on the closing prices. This result shows that the application of
range data in the standard univariate GARCH model increases the accuracy of covariance forecasts based on the DCC model. The
second benchmark, DCC-CARR, is based on range data. This means that the way in which range data is utilized in the univariate
volatility model is decisive in determining the forecasting accuracy of the DCC model. Since both benchmarks, i.e. the DCC-GARCH
and DCC-CARR models, share the same structure in the correlation component as the DCC-RGARCH model, our results clearly show
that more precise volatility estimates improve covariance forecasts.

The DCC-CARR model, which can be treated as the main benchmark model for models constructed based on range data, was
not only inferior to the DCC-RGARCH model for most assets, but also inferior to the DCC-GARCH model for currencies and ETFs.

To check the robustness of the results, we also consider 5-min returns instead of 15-min returns and two other loss functions (the
coefficient of determination and the LINEX loss function). The results for the MSE and MAE criteria for 5-min returns are presented
in Table A.6 in Appendix. The outcomes are very similar to those presented for 15-min returns.

2 Under the MSE criterion the difference between the loss function of the DCC-RGARCH model and the benchmark model is not statistically significant
for EUR/USD-GBP/USD, JPY/USD-GBP/USD, Apple-IBM (with both benchmark models), Oil-Energy (with the DCC-GARCH benchmark) and Amazon-Apple,
Amazon-Goldman Sachs, Apple-Google (with the DCC-CARR benchmark). Under the MAE measure there are only two relations for which there is no evidence
to reject the null hypothesis of equal predictive ability. These are JPY/USD-GBP/USD (with both benchmark models) and Amazon-Apple (with the DCC-CARR
benchmark).
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Table 9
Evaluation of covariance forecasts: the MSE criterion.

Assets DCC-GARCH DCC-CARR DCC-RGARCH DCC-GARCH vs.
DCC-RGARCH

DCC-CARR vs.
DCC-RGARCH

MSE P-value of DM test

Currency rates

EUR/USD-JPY/USD 0.654 0.748 0.561 0.044 0.044
EUR/USD-GBP/USD 0.698 0.941 0.508 0.149 0.167
JPY/USD-GBP/USD 1.334 2.075 1.016 0.233 0.193

Exchange-traded funds

Oil-Natural Gas 62.800 64.876 63.108 0.750 0.000
Oil-Energy 61.59 103.049 60.347 0.182 0.000
Natural Gas-Energy 30.734 81.546 30.230 0.036 0.000

Stocks

Amazon-Apple 198.390 191.357 172.797 0.038 0.109
Amazon-Goldman Sachs 70.799 73.782 70.702 0.008 0.186
Amazon-Google 169.973 160.102 148.522 0.001 0.088
Amazon-IBM 48.763 45.834 42.501 0.005 0.088
Apple-Goldman Sachs 99.443 99.274 87.165 0.023 0.048
Apple-Google 268.149 265.364 227.639 0.097 0.113
Apple-IBM 148.476 145.042 114.888 0.122 0.145
Goldman Sachs-Google 66.727 63.389 56.076 0.000 0.032
Goldman Sachs-IBM 41.518 40.048 36.398 0.000 0.006
Google-IBM 56.165 53.489 47.270 0.021 0.076

The evaluation period is January 4, 2010, to December 30, 2016, the realized covariance is used as a proxy of covariance
and estimated as the sum of products of 15-min returns. The lowest values of MSE are marked in bold. The p-values of the
Diebold–Mariano test are presented for pairs of models with respect to the two benchmarks: the DCC-GARCH and DCC-CARR
models. A p-value lower than the significance level means that the forecasts of covariance from the DCC-RGARCH model are
more accurate than the forecasts from a benchmark model (here DCC-GARCH or DCC-CARR).

Table 10
Evaluation of covariance forecasts: the MAE criterion.

Assets DCC-GARCH DCC-CARR DCC-RGARCH DCC-GARCH vs.
DCC-RGARCH

DCC-CARR vs.
DCC-RGARCH

MAE P-value of DM test

Currency rates

EUR/USD-JPY/USD 0.106 0.112 0.104 0.002 0.000
EUR/USD-GBP/USD 0.098 0.099 0.092 0.000 0.006
JPY/USD-GBP/USD 0.088 0.092 0.086 0.166 0.120

Exchange-traded funds

Oil-Natural Gas 1.453 1.478 1.446 0.028 0.000
Oil-Energy 1.291 1.494 1.204 0.000 0.000
Natural Gas-Energy 1.046 1.997 1.024 0.000 0.000

Stocks

Amazon-Apple 1.299 1.157 1.142 0.000 0.103
Amazon-Goldman Sachs 1.210 1.134 1.106 0.000 0.001
Amazon-Google 1.506 1.299 1.255 0.000 0.001
Amazon-IBM 0.875 0.793 0.765 0.000 0.000
Apple-Goldman Sachs 1.060 1.037 0.978 0.000 0.000
Apple-Google 1.157 1.065 1.015 0.000 0.000
Apple-IBM 0.820 0.767 0.716 0.000 0.000
Goldman Sachs-Google 1.093 1.050 0.971 0.000 0.000
Goldman Sachs-IBM 0.841 0.813 0.752 0.000 0.000
Google-IBM 0.743 0.689 0.651 0.000 0.000

The evaluation period is January 4, 2010, to December 30, 2016, the realized covariance is used as a proxy of covariance
and estimated as the sum of products of 15-min returns. The lowest values of MAE are marked in bold. The p-values of the
Diebold–Mariano test are presented for pairs of models with respect to the two benchmarks: the DCC-GARCH and DCC-CARR
models. A p-value lower than the significance level means that the forecasts of covariance from the DCC-RGARCH model are
more accurate than the forecasts from a benchmark model (here DCC-GARCH or DCC-CARR).

Table 11 presents the coefficient of determination values from the Mincer–Zarnowitz regression. A proxy of covariance is
regressed on a constant and the forecast of covariance. We are unable to calculate the logarithmic loss function (see Section 4.2)
because some covariances are negative.
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Table 11
Evaluation of covariance forecasts: the coefficient of determination.

Assets DCC-GARCH DCC-CARR DCC-RGARCH

Currency rates

EUR/USD-JPY/USD 0.224 0.098 0.364
EUR/USD-GBP/USD 0.320 0.097 0.513
JPY/USD-GBP/USD 0.370 0.016 0.507

Exchange-traded funds

Oil-Natural Gas 0.023 0.005 0.016
Oil-Energy 0.373 0.083 0.392
Natural Gas-Energy 0.029 0.012 0.031

Stocks

Amazon-Apple 0.033 0.070 0.215
Amazon-Goldman Sachs 0.054 0.103 0.154
Amazon-Google 0.050 0.115 0.256
Amazon-IBM 0.049 0.116 0.251
Apple-Goldman Sachs 0.070 0.076 0.208
Apple-Google 0.045 0.050 0.279
Apple-IBM 0.025 0.047 0.404
Goldman Sachs-Google 0.077 0.122 0.248
Goldman Sachs-IBM 0.084 0.119 0.250
Google-IBM 0.050 0.108 0.327

The evaluation period is January 4, 2010, to December 30, 2016, the realized covariance based
on 15-min returns is used as a proxy of covariance. The highest values of 𝑅2 are marked in bold.

For all covariances except the relation between the United States Oil and United States Natural Gas Funds the highest R2 values
are obtained for the DCC-RGARCH model. In most cases the superiority of this model is considerable.

We obtain different results for the asymmetric loss function LINEX. The values of the function for 𝑎 = −1 and 𝑎 = 1 are presented
in the Appendix in Tables A.7 and A.8, respectively. The results for all relations between currencies rates indicate that the covariance
forecasts based on the DCC-RGARCH model are more accurate than the forecasts from the competing DCC models. The outcomes
for other assets are mixed but outliers have considerable influence on the evaluation. After excluding the highest 1% of values
the results depend on the valuation of the over- and under-prediction errors. For 𝑎 = −1, i.e. when over-prediction errors have a
higher impact on the loss function, then the best forecasts are based on the DCC-RGARCH model, whereas for 𝑎 = 1, i.e. when
under-prediction errors have a greater influence on the LINEX, then the DCC-CARR is better according to this criterion.

4.4. Forecasting value-at-risk

Covariance forecasting is crucial for most multivariate financial applications, such as portfolio construction, valuation of assets,
risk management and contagion effect. More accurate covariance forecasts give an advantage in various financial applications. That
is why covariance forecasting, similarly like volatility forecasting, has not only statistical but also economic consequences.

In this subsection we apply the considered DCC models to one such application, namely the evaluation of risk, using the value-
at-risk (VaR) measure. VaR was developed by financial practitioners as an easily interpretable number which encodes information
about a portfolio’s risk. Despite being a single number, VaR enables managers to interpret the cost of risk and allocate capital
efficiently. We formulate daily forecasts of VaR for three separate portfolios of currency rates, commodity exchange traded funds
and stocks. All the portfolios are constructed with equal weights. The same assets and forecasting period are assumed as in the
analysis of variances and covariances in Sections 4.2 and 4.3 We construct VaR forecasts for the 95% and 99% confidence levels.

Our evaluation of the forecasts is based on two approaches: the first involves testing the competing VaR models for statistical
accuracy, while the second pertains to measuring the loss to the economic agent as a result of using the model. We test the statistical
adequacy of the forecasts based on: the unconditional coverage test by Kupiec (1995), the independence and conditional coverage
tests by Christoffersen (1998), and the unconditional coverage, independence and conditional coverage tests by Candelon et al.
(2011). The results of these tests for the 95% VaR forecasts are presented in Table 12 (the outcomes for the 99% confidence level
are given in Table A.9 in the Appendix). The results for the Candelon et al. (2011) tests are presented for 5 moments, but we also
obtained very similar results for 1, 2, 3, 4 and 6 moments.

We do not obtain fully satisfactory results for all portfolios for any of the models, but the outcomes depend heavily on the kind
of assets and tests applied. The statistical test results do not differ sufficiently between the competing models to clearly indicate
which is a better model.

In the second approach, we perform an economic evaluation of the models based on loss functions. We concentrate on firm loss
functions. This approach emphasizes the role of the utility function of risk managers, who have to consider their firms’ profitability,
and therefore prefer smaller scaled VaR measures for efficient capital allocation. In order to assess whether the differences between
loss functions are statistically significant, we apply the Diebold–Mariano test. The results for the 95% VaR forecasts are given in
Table 13 (the outcomes for the 99% confidence level are presented in Table A.10 in the Appendix).
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Table 12
Evaluation of 95% VaR forecasts: unconditional coverage and independence tests.

Statistic DCC-GARCH DCC-CARR DCC-RGARCH

Value P-value Value P-value Value P-value

Currency rates

LRUC 0.549 0.489 0.436 0.509 0.927 0.336
LRIND 1.207 0.272 2.783 0.095 1.019 0.313
LRCC 1.756 0.416 3.219 0.200 1.946 0.378
JUC 0.417 0.532 0.557 0.494 0.772 0.353
JIND 5.049 0.095 0.318 0.929 16.040 0.010
JCC 7.944 0.082 0.736 0.905 37.134 0.010

Exchange-traded funds

LRUC 3.294 0.070 0.000 0.991 0.618 0.432
LRIND 0.368 0.544 0.548 0.459 1.041 0.308
LRCC 3.662 0.160 0.548 0.760 1.660 0.436
JUC 3.288 0.063 0.010 0.924 0.478 0.486
JIND 4.312 0.130 2.181 0.363 5.593 0.075
JCC 10.308 0.048 2.192 0.567 6.879 0.105

Stocks

LRUC 2.202 0.139 20.416 0.000 4.869 0.027
LRIND 0.002 0.968 1.433 0.231 0.251 0.616
LRCC 2.203 0.332 21.850 0.000 5.120 0.077
JUC 2.269 0.139 28.409 0.000 4.590 0.031
JIND 3.307 0.202 69.453 0.002 6.289 0.060
JCC 5.880 0.146 19970.690 0.000 11.226 0.036

The evaluation period is January 4, 2010, to December 30, 2016, LRUC is the statistic for the Kupiec (1995)
unconditional coverage test, LRIND is the statistic for the Christoffersen (1998) independence test, LRCC is the
statistic for the Christoffersen (1998) conditional coverage test, JUC is the statistic for the Candelon et al. (2011)
unconditional coverage test, JIND is the statistic for the Candelon et al. (2011) independence test for up to five
lags, JCC is the statistic for the Candelon et al. (2011) conditional coverage test with the number of moments
fixed to 5, p-values for JUC, JIND, JCC were corrected by Dufour’s (2006) Monte Carlo procedure.

Table 13
Evaluation of 95% VaR forecasts: firm loss functions tests.

Loss function DCC-GARCH DCC-CARR DCC-
RGARCH

DCC-GARCH vs.
DCC-RGARCH

DCC-CARR vs.
DCC-RGARCH

Value of loss function × 10 P-value of DM test

Currency rates

FLF(STS) 0.371 0.394 0.369 0.158 0.014
FLF(C1) 5.991 6.091 5.972 0.033 0.000
FLF(C2) 3.079 3.204 3.055 0.127 0.000
FLF(C3) 7.189 7.203 7.161 0.153 0.032

Exchange-traded funds

FLF(STS) 1.500 1.689 1.566 0.975 0.001
FLF(C1) 5.829 5.912 5.804 0.044 0.000
FLF(C2) 9.776 10.144 9.627 0.016 0.000
FLF(C3) 23.725 23.918 22.428 0.001 0.000

Stocks

FLF(STS) 1.533 1.806 1.480 0.077 0.000
FLF(C1) 6.018 6.811 5.956 0.001 0.000
FLF(C2) 7.784 14.668 7.472 0.000 0.000
FLF(C3) 18.911 27.205 18.612 0.003 0.000

The evaluation period is January 4, 2010, to December 30, 2016, FLF(STS) is the loss function by Sarma et al.
(2003), FLF(C1), FLF(C2), FLF(C3) are three loss functions by Caporin (2008). The lowest values of loss functions
are marked in bold. The p-values of the Diebold–Mariano test are presented for pairs of models with respect
to the two benchmarks: the DCC-GARCH and DCC-CARR models. A p-value lower than the significance level
means that economic losses for the DCC-RGARCH model are lower than losses for a benchmark model (here
DCC-GARCH or DCC-CARR).

For most of the considered loss functions, significantly more accurate VaR forecasts are constructed based on the DCC-RGARCH
model than the DCC-GARCH or DCC-CARR models. This means that risk managers should prefer the DCC-RGARCH model for the
estimation of their VaR forecasts. The results are very similar for both commonly employed confidence levels, 95% and 99%.
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Table A.1
Evaluation of covariance forecasts based on DCC-EGARCH and DCC-GJR models: the MSE criterion.

Assets DCC-GARCH DCC-EGARCH DCC-GJR DCC-GARCH vs.
DCC-EGARCH

DCC-GARCH vs.
DCC-GJR

MSE P-value of DM test

Currency rates

EUR/USD-JPY/USD 0.654 0.756 0.755 0.953 0.946
EUR/USD-GBP/USD 0.698 0.939 0.923 0.809 0.797
JPY/USD-GBP/USD 1.334 2.033 2.052 0.812 0.819

Exchange-traded funds

Oil-Natural Gas 62.800 64.495 64.842 0.997 1.000
Oil-Energy 61.59 67.994 67.968 0.999 0.995
Natural Gas-Energy 30.734 31.307 31.530 0.984 1.000

Stocks

Amazon-Apple 198.291 198.909 200.043 0.682 0.792
Amazon-Goldman Sachs 77.756 76.526 75.877 0.086 0.067
Amazon-Google 169.777 175.503 175.194 0.926 0.914
Amazon-IBM 48.742 47.569 48.025 0.005 0.092
Apple-Goldman Sachs 99.387 103.087 102.637 0.989 0.989
Apple-Google 267.998 279.135 274.478 1.000 0.853
Apple-IBM 148.393 150.017 150.018 0.987 0.990
Goldman Sachs-Google 66.695 70.884 69.567 1.000 0.995
Goldman Sachs-IBM 41.495 41.751 41.582 0.789 0.654
Google-IBM 56.133 56.646 56.662 0.873 0.878

The evaluation period is January 4, 2010, to December 30, 2016, the realized covariance is used as a proxy of covariance
and estimated as the sum of products of 15-min returns. The lowest values of MSE are marked in bold. The p-values of the
Diebold–Mariano test are presented for pairs of models with respect to the benchmark the DCC-GARCH model. A p-value lower
than the significance level means that the forecasts of covariance from the DCC-EGARCH or DCC-GJR models are more accurate
than the forecasts from the DCC-GARCH model.

Table A.2
Evaluation of covariance forecasts based on DCC-EGARCH and DCC-GJR models: the MAE criterion.

Assets DCC-GARCH DCC-EGARCH DCC-GJR DCC-GARCH vs.
DCC-EGARCH

DCC-GARCH vs.
DCC-GJR

MAE P-value of DM test

Currency rates

EUR/USD-JPY/USD 0.106 0.113 0.111 1.000 1.000
EUR/USD-GBP/USD 0.098 0.107 0.100 1.000 0.801
JPY/USD-GBP/USD 0.088 0.090 0.089 0.754 0.639

Exchange-traded funds

Oil-Natural Gas 1.453 1.466 1.468 0.992 1.000
Oil-Energy 1.291 1.297 1.302 0.650 0.734
Natural Gas-Energy 1.046 1.043 1.051 0.232 0.842

Stocks

Amazon-Apple 1.299 1.258 1.289 0.000 0.134
Amazon-Goldman Sachs 1.209 1.134 1.145 0.000 0.000
Amazon-Google 1.506 1.333 1.329 0.000 0.000
Amazon-IBM 0.875 0.820 0.829 0.000 0.000
Apple-Goldman Sachs 1.060 1.115 1.158 1.000 1.000
Apple-Google 1.157 1.483 1.483 1.000 1.000
Apple-IBM 0.820 0.866 0.891 1.000 1.000
Goldman Sachs-Google 1.093 1.134 1.120 1.000 1.000
Goldman Sachs-IBM 0.841 0.828 0.839 0.005 0.355
Google-IBM 0.742 0.755 0.755 0.993 0.991

The realized covariance is used as a proxy of covariance and estimated as the sum of products of 15-min returns. The lowest
values of MAE are marked in bold. The p-values of the Diebold–Mariano test are presented for pairs of models with respect to
the benchmark DCC-GARCH model. A p-value lower than the significance level means that the forecasts of covariance from the
DCC-EGARCH or DCC-GJR models are more accurate than the forecasts from the DCC-GARCH model.

5. Conclusion

The DCC-GARCH model is one of the most popular multivariate volatility models, due to its simplicity and ease of estimation.
However, its parameters are usually estimated based only on closing prices, even though high and low prices contain more
information about volatility. In this study, we have proposed a new specification of the DCC model called the DCC-Range-GARCH
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Table A.3
Evaluation of variance forecasts: the MSE and MAE criteria for realized variance calculated based on 5-min returns.

Assets GARCH CARR RGARCH GARCH CARR RGARCH

MSE MAE

Currency rates

EUR/USD 0.106 0.111 0.093 0.157 0.158 0.147
GBP/USD 0.721 1.025 0.486 0.158 0.149 0.139
JPY/USD 0.411 0.462 0.317 0.219 0.215 0.194

Exchange-traded funds

Energy 7.695 8.086 6.581 1.138 1.232 0.991
Oil 13.154 18.126 14.142 2.119 2.365 2.043
Natural Gas 20.715 24.516 21.849 3.061 3.350 3.038

Stocks

Amazon 199.106 192.202 194.809 3.941 2.347 3.393
Apple 96.345 97.437 102.881 2.504 3.315 2.404
Goldman Sachs 18.464 17.595 17.450 1.901 1.953 1.806
Google 68.873 59.054 60.641 2.174 1.898 1.910
IBM 15.504 14.592 14.935 1.180 1.078 1.099

The evaluation period is January 4, 2010, to December 30, 2016, the realized variance is used as a proxy of variance and
estimated as the sum of squares of 5-min returns. The lowest values of MSE and MAE are marked in bold.

Table A.4
Evaluation of variance forecasts: the LINEX function with a = −1.

Assets GARCH CARR RGARCH GARCH CARR RGARCH

Full sample Excluding 1% of upper outliers

Currency rates

EUR/USD 0.301 0.407 0.210 0.019 0.021 0.018
GBP/USD 1015.023 1.500e+04 59.152 0.013 0.015 0.012
JPY/USD 5.190e+07 8.880e+13 1.012e+05 0.036 0.033 0.029

Exchange-traded funds

Energy 4.842 275.893 12.034 1.410 2.584 0.872
Oil 7784.863 3.710e+08 1.185e+04 77.673 148.632 54.823
Natural Gas 2379.619 3005.722 2379.228 34.479 1486.421 62.574

Stocks

Amazon 698.416 32.762 62.284 2.094 1.801 1.483
Apple 328.116 4.120e+13 3.530e+16 13.742 5.866 7.255
Goldman Sachs 7.469e+05 5.362e+04 7.375e+04 2.044 3.335 2.046
Google 1.120e+18 52.643 29.517 1.625 1.297 1.042
IBM 1.396 0.880 1.176 0.375 0.334 0.324

The evaluation period is January 4, 2010, to December 30, 2016, the realized variance is used as a proxy of variance and
estimated as the sum of squares of 15-min returns. The lowest values of the LINEX function are marked in bold.

Table A.5
Evaluation of variance forecasts: the LINEX function with a = 1.

Assets GARCH CARR RGARCH GARCH CARR RGARCH

Full sample Excluding 1% of upper outliers

Currency rates

EUR/USD 0.301 0.407 0.210 2,206e−02 2,283e−02 2,031e−02
GBP/USD 5,190e+07 8,881e+13 1,012e+05 1,504e−02 1,504e−02 1,285e−02
JPY/USD 1,015e+03 1,500e+04 5,915e+01 4,273e−02 4,170e−02 3,617e−02

Exchange-traded funds

Energy 7,661e+24 6,502e+25 3,173e+24 101.585 26.510 24.855
Oil 7,990e+16 2,846e+17 1,817e+17 2,463e+04 8,599e+04 6,073e+04
Natural Gas 1,206e+21 1,793e+23 1,449e+23 2732.795 4001.910 2715.055

(continued on next page)

72



P. Fiszeder, M. Fałdziński and P. Molnár Journal of Empirical Finance 54 (2019) 58–76

Table A.5 (continued).
Assets GARCH CARR RGARCH GARCH CARR RGARCH

Full sample Excluding 1% of upper outliers

Stocks

Amazon 9,198e+135 4,589e+138 3,725e+135 2,250e+11 1,790e+10 1,416e+11
Apple 4,573e+128 1,856e+95 1,600e+97 2,606e+07 8,760e+07 1,921e+08
Goldman Sachs 8,917e+15 1,104e+16 2,803e+14 405.994 102.403 243.711
Google 6,214e+67 4,470e+67 8,280e+67 3,076e+03 3,737e+04 4,420e+04
IBM 7,689e+22 1,113e+30 8,391e+29 51.523 50.826 41.546

The evaluation period is January 4, 2010, to December 30, 2016, the realized variance is used as a proxy of variance and
estimated as the sum of squares of 15-min returns. The lowest values of the LINEX function are marked in bold.

Table A.6
Evaluation of covariance forecasts: the MSE and MAE criteria for realized covariance calculated based on 5-min returns.

Assets DCC-GARCH DCC-CARR DCC-RGARCH DCC-GARCH DCC-CARR DCC-RGARCH

MSE MAE

Currency rates

EUR/USD-JPY/USD 0.041 0.048 0.035 0.096 0.101 0.093
EUR/USD-GBP/USD 0.060 0.082 0.043 0.094 0.093 0.087
JPY/USD-GBP/USD 0.071 0.122 0.055 0.080 0.083 0.078

Exchange-traded funds

Oil-Natural Gas 5.940 6.146 5.979 1.392 1.417 1.383
Oil-Energy 5.714 9.734 5.640 1.247 1.451 1.161
Natural Gas-Energy 2.923 8.124 2.869 1.002 2.005 0.976

Stocks

Amazon-Apple 15.597 14.959 13.280 1.202 1.059 1.051
Amazon-Goldman Sachs 6.657 6.230 5.994 1.140 1.051 1.034
Amazon-Google 14.906 13.894 12.957 1.441 1.222 1.193
Amazon-IBM 4.315 4.038 3.733 0.826 0.739 0.714
Apple-Goldman Sachs 7.480 7.534 6.677 0.993 0.974 0.917
Apple-Google 17.530 17.337 14.424 1.075 0.990 0.942
Apple-IBM 11.066 10.786 8.328 0.781 0.728 0.680
Goldman Sachs-Google 5.318 4.966 4.360 1.027 0.980 0.899
Goldman Sachs-IBM 3.404 3.272 2.999 0.791 0.770 0.709
Google-IBM 4.630 4.360 3.827 0.705 0.649 0.614

The evaluation period is January 4, 2010, to December 30, 2016, the realized covariance is used as a proxy of covariance and
estimated as the sum of products of 5-min returns. The lowest values of MSE and MAE are marked in bold.

Table A.7
Evaluation of covariance forecasts: the LINEX function with a = −1.

Assets DCC-GARCH DCC-CARR DCC-RGARCH DCC-GARCH DCC-CARR DCC-RGARCH

Full sample Excluding 1% of upper outliers

Currency rates

EUR/USD-JPY/USD 0.149 0.338 0.076 8,744e−03 6,985e−03 6,085e−03
EUR/USD-GBP/USD 0.020 0.019 0.021 8,755e−03 9,538e−03 8,503e−03
JPY/USD-GBP/USD 334.772 3,301e+04 11.909 5,310e−03 5,535e−03 5,004e−03

Exchange-traded funds

Oil-Natural Gas 2,590e+06 1,771e+06 2,001e+06 8.122 8.769 7.664
Oil-Energy 2.190 1.072 1.585 1.368 0.870 1.072
Natural Gas-Energy 1716.904 3,315e+05 1000.640 2.278 107.617 2.016

Stocks

Amazon-Apple 7075.788 2292.080 3985.507 0.722 0.487 0.518
Amazon-Goldman Sachs 5106.527 2016.502 5924.394 0.635 0.556 0.565
Amazon-Google 1,280e+08 1,570e+08 1,170e+08 1.008 0.670 0.665
Amazon-IBM 51.210 53.546 74.122 0.313 0.234 0.230

(continued on next page)
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Table A.7 (continued).
Assets DCC-GARCH DCC-CARR DCC-RGARCH DCC-GARCH DCC-CARR DCC-RGARCH

Full sample Excluding 1% of upper outliers

Apple-Goldman Sachs 2,750e+05 2,350e+05 2,446e+05 0.496 0.472 0.428
Apple-Google 13.275 111.506 1104.156 0.641 0.521 0.493
Apple-IBM 1.060 1.310 26.865 0.258 0.578 0.545
Goldman Sachs-Google 3,820e+08 6,970e+08 3,480e+08 0.582 0.578 0.545
Goldman Sachs-IBM 706.926 523.911 869.393 0.270 0.252 0.235
Google-IBM 1,367e+06 6,258e+05 1,188e+06 0.190 0.168 0.162

The evaluation period is January 4, 2010, to December 30, 2016, the realized covariance is used as a proxy of covariance and
estimated as the sum of products of 15-min returns. The lowest values of the LINEX function are marked in bold.

Table A.8
Evaluation of covariance forecasts: the LINEX function with a = 1.

Assets DCC-GARCH DCC-CARR DCC-RGARCH DCC-GARCH DCC-CARR DCC-RGARCH

Full sample Excluding 1% of upper outliers

Currency rates

EUR/USD-JPY/USD 0.082 0.094 0.053 9,379e−03 1,038e−02 9,186e−03
EUR/USD-GBP/USD 2.832 33.415 0.322 7,551e−03 7,295e−03 6,649e−03
JPY/USD-GBP/USD 0.043 0.035 0.100 5,626e−03 5,913e−03 5,303e−03

Exchange-traded funds

Oil-Natural Gas 4,393e+06 7,413e+06 8,555e+06 7.022 8.507 8.077
Oil-Energy 8,996e+12 2,484e+14 7,500e+12 68.685 1194.447 54.811
Natural Gas-Energy 3,420e+04 4,503e+03 4,924e+04 1.060 1.298 1.128

Stocks

Amazon-Apple 8,926e+54 2,283e+55 1,786e+55 20.741 12.284 15.554
Amazon-Goldman Sachs 3,554e+23 6,687e+23 4,391e+23 16.859 14.397 23.327
Amazon-Google 1,992e+33 1,023e+34 6,252e+33 1217.696 342.058 744.859
Amazon-IBM 4,911e+16 5,291e+16 4,548e+16 5.500 3.768 5.002
Apple-Goldman Sachs 1,213e+38 4,439e+38 3,180e+38 3.709 2.987 3.258
Apple-Google 8,100e+11 2,099e+10 3,360e+10 976.587 1301.767 935.519
Apple-IBM 1,485e+07 1,252e+07 1,533e+07 5.479 3.032 3.542
Goldman Sachs-Google 9,756e+22 6,748e+23 1,957e+09 14.760 6.429 10.240
Goldman Sachs-IBM 6,722e+12 9,757e+12 7,831e+12 1.973 1.700 1.848
Google-IBM 7,565e+22 7,253e+22 2,276e+16 1.404 1.489 1.322

The evaluation period is January 4, 2010, to December 30, 2016, the realized covariance is used as a proxy of covariance and
estimated as the sum of products of 15-min returns. The lowest values of the LINEX function are marked in bold.

model, which is a combination of the DCC model by Engle (2002) and the Range-GARCH model by Molnár (2016). The DCC-Range-
GARCH model is very similar to the DCC model by Engle but it is based on a much more efficient volatility estimator formulated
on the daily range, the log-difference between the high and low prices.

We have compared our DCC-Range-GARCH model to the DCC-GARCH model by Engle (2002) and the DCC-CARR model by
Chou et al. (2009). All these three models are very similar in their correlation part, but differ in their specification for conditional
variances. The DCC-GARCH model is based on the GARCH model, the DCC-Range-GARCH model is formulated on the Range-GARCH
model and the DCC-CARR model is based on the CARR model by Chou (2005). We have evaluated these models on three data sets:
currencies, exchange traded funds and stocks.

The univariate range-based models, CARR and Range-GARCH, had not been previously compared. We therefore first compare
forecasting accuracy of these models. We found that the CARR model is outperformed by the Range-GARCH model. Surprisingly,
the CARR model is often inferior even to the standard GARCH model, whereas the Range-GARCH model outperforms it in most
cases. We then turned our attention to multivariate models and the comparison of covariance forecasts, which were the main focus
of this paper. We found that the proposed DCC-Range-GARCH model is superior not only to the standard DCC-GARCH model but
also to the DCC-CARR model.

Our results illustrate that the use of range data in the DCC model can improve the estimation of covariances of returns and
increase the accuracy of covariance and VaR forecasts based on this model, compared with using closing prices only. Moreover, the
way the range is utilized matters, as our proposed model outperforms the DCC-CARR model, which is also based on range. Therefore,
other multivariate range-based volatility models such as the double smooth transition conditional correlation CARR model by Chou
and Cai (2009), the range-based copula models by Chiang and Wang (2011) and Wu and Liang (2011) and the range-based regime-
switching dynamic conditional correlation model by Su and Wu (2014) would probably also benefit from using the Range-GARCH
model in place of the CARR specification.
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Table A.9
Evaluation of 99% VaR forecasts: unconditional coverage and independence tests.

Statistic DCC-GARCH DCC-CARR DCC-RGARCH

Value P-value Value P-value Value P-value

Currency rates

LRUC 0.270 0.603 4.621 0.032 0.076 0.782
LRIND 0.285 0.594 0.567 0.452 0.321 0.571
LRCC 0.555 0.758 5.188 0.075 0.398 0.820
JUC 0.080 0.746 4.093 0.042 0.001 0.911
JIND 3.275 0.130 3.308 0.129 1.858 0.310
JCC 3.728 0.253 6.720 0.087 2.012 0.520

Exchange-traded funds

LRUC 2.039 0.153 0.008 0.928 0.414 0.520
LRIND 0.165 0.685 0.372 0.542 0.258 0.612
LRCC 2.204 0.332 0.380 0.827 0.672 0.715
JUC 1.658 0.206 0.101 0.739 0.166 0.652
JIND 2.770 0.181 0.508 0.788 0.323 0.883
JCC 16.695 0.019 0.545 0.990 0.559 0.915

Stocks

LRUC 26.337 0.000 1.514 0.219 28.175 0.000
LRIND 0.721 0.396 1.050 0.306 0.631 0.427
LRCC 27.059 0.000 2.564 0.278 28.806 0.000
JUC 15.976 0.001 1.713 0.159 16.827 0.001
JIND 8.888 0.013 83.216 0.000 5.052 0.055
JCC 27.499 0.008 31.612 0.008 26.992 0.007

The evaluation period is January 4, 2010, to December 30, 2016, LRUC is the statistic for the Kupiec (1995)
unconditional coverage test, LRIND is the statistic for the Christoffersen (1998) independence test, LRCC is the
statistic for the Christoffersen (1998) conditional coverage test, JUC is the statistic for the Candelon et al. (2011)
unconditional coverage test, JIND is the statistic for the Candelon et al. (2011) independence test for up to five
lags, JCC is the statistic for the Candelon et al. (2011) conditional coverage test with the number of moments
fixed to 5, p-values for JUC, JIND, JCC were corrected by Dufour’s (2006) Monte Carlo procedure.

Table A.10
Evaluation of 99% VaR forecasts: firm loss functions tests.

Loss function DCC-GARCH DCC-CARR DCC-
RGARCH

DCC-GARCH vs.
DCC-RGARCH

DCC-CARR vs.
DCC-RGARCH

Value of loss function × 101 P-value of DM test

Currency rates

FLF(STS) 0.506 0.514 0.502 0.066 0.021
FLF(C1) 6.913 6.927 6.900 0.080 0.012
FLF(C2) 5.322 5.405 5.280 0.110 0.000
FLF(C3) 9.981 9.988 9.939 0.149 0.076

Exchange-traded funds

FLF(STS) 1.744 1.849 1.751 0.599 0.001
FLF(C1) 6.865 6.862 6.800 0.000 0.000
FLF(C2) 17.239 17.239 16.764 0.000 0.000
FLF(C3) 33.010 33.260 32.392 0.000 0.000

Stocks

FLF(STS) 1.474 2.029 1.416 0.014 0.000
FLF(C1) 6.811 7.535 6.734 0.000 0.000
FLF(C2) 13.532 23.767 12.907 0.000 0.000
FLF(C3) 26.455 37.688 25.790 0.000 0.000

The evaluation period is January 4, 2010, to December 30, 2016, FLF(STS) is the loss function by Sarma et al. (2003), FLF(C1),
FLF(C2), FLF(C3) are three loss functions by Caporin (2008). The lowest values of loss functions are marked in bold. The
p-values of the Diebold–Mariano test are presented for pairs of models with respect to the two benchmarks: the DCC-GARCH
and DCC-CARR models. A p-value lower than the significance level means that economic losses for the DCC-RGARCH model are
lower than those for a benchmark model (here DCC-GARCH or DCC-CARR).

Appendix

See Tables A.1–A.10.
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