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Abstract: We compare the forecasting performance of the generalized autoregressive conditional 
heteroscedasticity (GARCH) -type models with support vector regression (SVR) for futures con-
tracts of selected energy commodities: Crude oil, natural gas, heating oil, gasoil and gasoline. The 
GARCH models are commonly used in volatility analysis, while SVR is one of machine learning 
methods, which have gained attention and interest in recent years. We show that the accuracy of 
volatility forecasts depends substantially on the applied proxy of volatility. Our study confirms that 
SVR with properly determined hyperparameters can lead to lower forecasting errors than the 
GARCH models when the squared daily return is used as the proxy of volatility in an evaluation. 
Meanwhile, if we apply the Parkinson estimator which is a more accurate approximation of volatil-
ity, the results usually favor the GARCH models. Moreover, it is difficult to choose the best model 
among the GARCH models for all analyzed commodities, however, forecasts based on the asym-
metric GARCH models are often the most accurate. While, in the class of the SVR models, the results 
indicate the forecasting superiority of the SVR model with the linear kernel and 15 lags, which has 
the lowest mean square error (MSE) and mean absolute error (MAE) among the SVR models in 92% 
cases. 

Keywords: energy commodities; futures contracts; volatility; forecasting; GARCH models; support 
vector regression; machine learning 
 

1. Introduction 
Energy risk has always been one of the major risk factors for most firms involved in 

key industrial sectors in both developed and developing countries. Risk management of 
energy commodities is a crucial issue for majority industrial firms, as it can seriously affect 
its competitiveness, viability and future profitability. Global economic developments, 
emerging technological advances and economic, geopolitical and environmental events 
have caused a significant increase in volatility of energy commodities prices in the last 20 
years (cf. [1]). For these reasons, the ability to predict volatility of energy commodities has 
been gaining more and more importance. 

Commodity market participants, like the large corporate producers, manufacturers, 
large energy consuming firms, alongside a number of investment banks, specialist funds, 
investors and traders, need volatility forecasts for effective investment, hedging risk and 
arbitrage strategies. There are many methods for volatility forecasting but the most pop-
ular in the literature are the generalized autoregressive conditional heteroscedasticity 
(GARCH) models. In particular, they have already been applied in plenty of studies for 
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energy commodities, including: Crude oil (e.g., [2–11]), natural gas (e.g., [4,6,12]), heating 
oil (e.g., [2,3,6]), gasoline (e.g., [3,6]) and gasoil (e.g., [2]). 

In order to forecast volatility, machine learning techniques can also be applied. One 
such technique, which has been gaining high popularity in recent years, is support vector 
regression (SVR). In particular, SVR and SVR-based hybrid models have been applied in 
many studies to forecast prices of energy commodities, including: crude oil (e.g., [13–18]) 
and natural gas (e.g., [19,20]). However, they have been used only by Zhang and Zhang 
[8] to forecast volatility of energy commodities, specifically crude oil. 

In this paper, we compare the volatility forecasting performance of the GARCH-type 
models with support vector regression for futures contracts of selected energy commodi-
ties, namely, crude oil, gasoil, gasoline, heating oil and natural gas, quoted at New York 
Mercantile Exchange and International Exchange. It should be noted that, nowadays, de-
rivative markets are very important research areas since they play an essential role in 
trading energy commodities, and turnover on such markets has become significantly 
higher in comparison to spot markets. 

This study has two main contributions. Firstly, it is the first comparison of the 
GARCH-type models and SVR for futures contracts for energy commodities. As we men-
tioned before, according to our knowledge, SVR has been used for volatility forecasting 
of energy commodities only by Zhang, and Zhang [8] who applied the least-squares ver-
sion of a SVR model—least squares support vector machines (LSSVM) [21] for the West 
Texas Intermediate (WTI) and Brent crude oil spot prices. However, they used this model 
only as a part of the hybrid forecasting method—to forecast the residual series from the 
exponential generalized autoregressive conditional heteroscedasticity (EGARCH) model. 

Secondly, we show that the accuracy of volatility forecasts depends substantially on 
the applied proxy of volatility. It has been shown in the literature that volatility forecasts 
of financial assets based on SVR models can be more precise than those from GARCH-
type models (e.g., [22–33]). However, in most of these papers, the squared daily returns 
have been taken as the ex-post measure of volatility. Our study confirms that SVR with 
properly determined hyperparameters can lead to lower forecasting errors than the 
GARCH models when the squared daily return is used as the proxy of volatility in an 
evaluation. Meanwhile, if we apply the Parkinson estimator, which is a more accurate 
approximation of volatility, the results are different since they usually favor the GARCH 
models over SVR. 

The rest of the paper is organized in the following way. Section 2 provides a descrip-
tion of applied models and methods. In Section 3 we introduce and describe data, explain 
the forecasting procedure and present the results of the research for energy commodities. 
Finally, in the last section, we give our concluding remarks. 

2. Description of Models 
2.1. GARCH-Type Models 

The GARCH models are a standard tool applied in volatility research. The primary 
model is the standard GARCH model introduced by Bollerslev [34], which describes time-
varying variance. Let us assume that 𝜀  is the innovation process which can be presented 
as: 𝜀 |𝜓 ~𝑁(0, ℎ ), (1)

where ℎ  is the conditional variance, 𝜓  is the set of all information available at time 𝑡 −1, 𝑁  is the conditional normal distribution. Then the GARCH(𝑝, 𝑞) model (denoted as 
GARCH-n) is given as, ℎ = 𝛼 + ∑ 𝛼 𝜀 + ∑ 𝛽 ℎ , (2) 

where 𝛼 > 0, 𝛼 ≥ 0, 𝛽 ≥ 0  for 𝑖 = 1,2, … , 𝑞;  𝑗 = 1,2, … , 𝑝 , however Nelson, Cao [35] 
gave weaker conditions for non-negativity of the conditional variance. 

Instead of the conditional normal distribution in the Equation (1) the Student’s t-dis-
tribution can be applied (the model denoted as GARCH-t) in order to better describe fatter 
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tails and leptokurtosis of unconditional distributions of many empirical financial time se-
ries [36]. 

The conditional variance function of the standard GARCH model is symmetric in the 
lagged values of 𝜀 . Such function may be inappropriate for modelling the volatility of 
returns because it cannot represent a phenomenon, known as the leverage effect, i.e., the 
negative correlation between volatility and past returns. The first model describing asym-
metric responses of the conditional variance to positive and negative errors is the expo-
nential GARCH (EGARCH) model proposed by Nelson [37]. The EGARCH(𝑝, 𝑞) model 
is specified as, ln ℎ = 𝛼 + ∑ 𝛼 𝜃𝑧 + 𝛾[|𝑧 | − 𝐸(|𝑧 |)] + ∑ 𝛽 ln ℎ , (3) 

where 𝛼 ≡ 1, 𝑧 = 𝜀 /ℎ / , 𝐸 is the expected value. The logarithmic form of the condi-
tional variance means that it is not necessary to introduce any restrictions on parameters 
to ensure the positivity of the conditional variance. 

The second most popular asymmetric GARCH model is the GJR model introduced 
by Glosten et al. [38]. The GJR(𝑝, 𝑞) model is given as, ℎ = 𝛼 + ∑ 𝛼 𝜀 + ∑ 𝛾 𝐼 𝜀 + ∑ 𝛽 ℎ , (4) 

where 𝐼  is a dummy variable which satisfies 𝐼 = 1  when 𝜀 ≤ 0  and 𝐼 = 0 
when 𝜀 > 0. To ensure the positivity of the conditional variance parameters should 
meet the following requirements: 𝛼 > 0, 𝛼 ≥ 0, 𝛼 + 𝛾 ≥ 0 for 𝑖 = 1,2, … , 𝑞 , 𝛽 ≥ 0 for 𝑗 = 1,2, … , 𝑝. 

Another model which captures asymmetry in volatility is the asymmetric power au-
toregressive conditional heteroscedasticity (APARCH) model proposed by Ding et al. [39]. 
The APARCH(𝑝, 𝑞) model is defined as, ℎ / = 𝛼 + ∑ 𝛼 (|𝜀 | + 𝛾 𝜀 ) + ∑ 𝛽 ℎ / , (5) 

where 𝛼 > 0, 𝛼 ≥ 0, 𝛽 ≥ 0  for 𝑖 = 1,2, … , 𝑞;  𝑗 = 1,2, … , 𝑝 . The exponent 𝑑  allows for 
more flexibility in the description of volatility. The class of APARCH models includes 
several other GARCH extensions as special cases, like the GJR model, the threshold auto-
regressive conditional heteroscedasticity (TARCH) model of Zakoian [40], the Taylor 
([41])/Schwert ([42]) GARCH model, the nonlinear autoregressive conditional heterosce-
dasticity (NARCH) of Higgins and Bera [43], the Log-ARCH of Geweke [44] and Pentula 
[45]. 

In many empirical studies, the sum of parameters estimates (except 𝛼 ) in the stand-
ard GARCH model is close to 1 which makes variance highly persistent. That is why Engle 
and Bollerslev [46] proposed the integrated GARCH (IGARCH) model in the form of 
Equation (2), where 𝛼 + ⋯ + 𝛼 + 𝛽 + ⋯ + 𝛽 = 1. A shock to the conditional variance 
in the IGARCH model is persistent in the sense that it remains significant for forecasts of 
all horizons. 

The last considered parameterization is the GARCH-in-mean (GARCH-M) model in-
troduced by Engle et al. [47]. The GARCH-M(𝑝, 𝑞) model is described as, 𝑟 = 𝛾 + 𝛿ℎ + 𝜀 , (6) ℎ = 𝛼 + ∑ 𝛼 𝜀 + ∑ 𝛽 ℎ , (7) 

where 𝛼 > 0, 𝛼 ≥ 0, 𝛽 ≥ 0 for 𝑖 = 1,2, … , 𝑞;  𝑗 = 1,2, … , 𝑝. The GARCH-M model is able 
to describe the fundamental trade-off relationship between return and risk. 

The parameters of the above GARCH-type models can be estimated by maximum 
likelihood or quasi-maximum likelihood methods. The log-likelihood function is de-
scribed as, 

𝐿(𝛓) = − 𝑛2 ln(2𝜋) − 12 lnℎ + 𝜀ℎ , (8) 
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where 𝛓 is a vector containing unknown parameters of the model, 𝑛 is the number of 
observations used in estimation. 

2.2. SVR Model 
Let 𝑦 be the dependent variable and 𝒙 the vector of regressors. Based on a training 

data set (𝒙 , 𝑦 ) ,… , we want to estimate the regression function that has, at most, 𝜀 
deviation from the outputs 𝑦  and that, at the same time, is as flat as possible [48]. The 
idea of SVR is to map the vectors 𝒙 onto a high-dimensional feature space using some 
fixed (nonlinear) transformation and then to estimate the linear model, 𝑓(𝒙) = ∑ 𝜔 𝜑 (𝒙) + 𝑏, (9) 

where 𝑑 is the dimension of the space, 𝜑 (𝒙) denote transformations, 𝜔  are the coeffi-
cients and 𝑏 is the bias term [49,50]. To assess the estimated model Vapnik [51] proposed 
the 𝜀-insensitive loss function, 𝐿 𝑦, 𝑓(𝒙) = 0, |𝑦 − 𝑓(𝒙)| ≤ 𝜀,|𝑦 − 𝑓(𝒙)| − 𝜀, otherwise, (10) 

which does not penalize errors below 𝜀. To estimate the coefficients of the SVR model (9) 
the 𝜀-insensitive loss function is used, however at the same time, the postulate of the 
model complexity reduction is taken into account by minimizing the expression ‖𝝎‖ =𝝎 𝝎, where 𝝎 = (𝜔 , 𝜔 , … , 𝜔 ) . In practice, it is not always possible to approximate all 
data of the training set with an error below 𝜀 (cf. [52]). In order to allow errors to be 
greater, the SVR model incorporates nonnegative slack variables 𝜉  and 𝜉∗ representing 
the upper and lower constraints, s.t., 𝑦 − 𝑓(𝒙𝒕) ≤ 𝜀 + 𝜉∗, (11) 𝑓(𝒙𝒕) − 𝑦 ≤ 𝜀 + 𝜉 , (12) 

for all 𝑡 = 1,2, . . . , 𝑛. Finally, the regression function 𝑓(𝒙) is obtained as the minimum of 
the functional, 𝛷(𝝎, 𝝃) = ‖𝝎‖ + 𝐶 ∑ (𝜉 + 𝜉∗), (13) 

where 𝐶 is a pre-specified positive value. The first term of the Functional (13) is used to 
penalize large weights and to maintain regression function flatness, whereas the second 
term penalizes training errors by using the ε-insensitive loss function [53]. Where, 𝐶 is 
the hyperparameter to trade off these two terms. It controls the penalty imposed on ob-
servations that lie outside the 𝜀-margin and, in consequence, helps to prevent overfitting. 
Both the 𝜀 and 𝐶 hyperparameters must be determined by the user. 

The optimization problem described above can be transformed into a corresponding 
dual problem using the Karush-Kuhn-Tucker conditions, with the solution, 𝑓(𝒙) = ∑ (𝛼 − 𝛼∗)𝐾(𝒙 , 𝒙), s.t. 0 ≤ 𝛼 ≤ 𝐶, 0 ≤ 𝛼∗ ≤ 𝐶, (14) 

where 𝛼  and 𝛼∗ are the Lagrange multipliers, 𝑛  is the number of support vectors and 𝐾 is the kernel function of the form, 𝐾(𝒙 , 𝒙) = ∑ 𝜑 (𝒙)𝜑 (𝐱 ). (15) 

Any function satisfying the Mercer’s condition ([51]) can be used as the kernel. In 
practice, the most commonly used kernel functions include (cf. [54]): 
- Linear (dot product): 𝐾(𝒙 , 𝒙) = 𝒙 𝒙, 
- Radial basis function (RBF): 𝐾(𝒙 , 𝒙) = exp(−𝛾‖𝒙 − 𝒙‖ ), 
- Polynomial: 𝐾(𝒙 , 𝒙) = (1 + 𝒙 𝒙) ; 𝑝 = 2,3, … 

2.3. Ex-Post Volatility Measures 
Volatility is not directly observable, even ex-post, therefore it has to be estimated. A 

popular proxy of the daily variance is the squared daily return, 
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𝜎 , = 𝑟 , (16) 

where 𝑟  is the daily logarithmic return at day 𝑡. This proxy can be identified as the clas-
sical variance estimator. 

Andersen and Bollerslev [55] showed that although the squared daily return is an 
unbiased estimator of the variance of return, it is also extremely noisy. A significantly 
more accurate measure of volatility is the realized variance (𝑅𝑉) calculated from intraday 
prices, 𝑅𝑉 = 𝑟 , , (17) 

where 𝑟 ,  is the intraday return (e.g., the 5-min return), 𝐾 is the number of intraday ob-
servations during a day. The realized variance is a significantly more efficient estimator 
of variance than the daily squared return, but high-frequency data are not commonly 
available and are significantly more expensive in comparison to daily data. 

An alternative way is to calculate range-based variance estimators, based on daily 
opening, low and high prices. In practice, these values are easily available alongside with 
daily closing prices. The range-based estimators have already been used as the proxy of 
volatility in many studies (e.g., [56–59]). Furthermore, many volatility models have been 
proposed based on these estimators (e.g., [60–64]). 

The Parkinson [65] estimator, the simplest of this class, is given as, 𝜎 , = [ln(𝐻 /𝐿 )] /(4ln2), (18) 

where 𝐻  and 𝐿  are high and low prices over a day 𝑡. This estimator assumes a zero 
drift process and is more than 4.9 times efficient than the classical variance estimator based 
on closing prices [65]. It has been shown that the accuracy of the Parkinson estimator is 
similar to the accuracy of the realized variance calculated from six observations during 
the day (see [59,66]). 

Two other most popular range-based variance estimators are Garman-Klass [67] and 
Rogers-Satchell [68] estimators. The former can be presented as, 𝜎 , = 0.5[ln(𝐻 /𝐿 )] − (2ln2 − 1)[ln(𝐶 /𝑂 )] , (19) 

where 𝐶  and 𝑂  are closing and opening prices at day 𝑡, respectively. The Garman-
Klass estimator assumes a zero drift process and is more than 7.4 times efficient than the 
classical variance estimator based on closing prices [67]. 

The Rogers-Satchell estimator is defined as: 𝜎 , = ln(𝐻 /𝑂 )ln(𝐻 /𝐶 ) + ln(𝐿 /𝑂 )ln(𝐿 /𝐶 ). (20) 

This estimator is independent of the drift. For a zero drift it is more than 6.0 times 
efficient than the classical variance estimator based on closing prices [68]. 

The realized variance is a more accurate proxy of volatility than the range-based es-
timators provided that intraday data are of good quality and the analyzed market is liquid 
(see [69]). However, the application of very high frequency data suffers from a large com-
putational burden. Moreover, the range-based estimators are more robust than the real-
ized variance to some microstructure effects like the bid-ask spread (e.g., [69,70]). 
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3. Forecasting Volatility of Energy Commodities 
3.1. Data 

In our study we investigate futures contracts of the selected energy commodities: 
WTI crude oil, gasoil, gasoline, heating oil and natural gas. Gasoil is quoted at the Inter-
national Exchange (ICE) and the rest of considered contacts are listed at the New York 
Mercantile Exchange (NYMEX). 

We analyze the data for the five-year period from 2 January 2015 to 31 December 
2019. We apply two proxies of ex-post volatility in the forecast evaluation: the daily 
squared return (Equation (16)) and the Parkinson estimator (Equation (18)). In order to 
avoid the noise induced by measuring the overnight volatility we analyze open-to-close 
percentage returns 𝑟 = 100𝑙𝑛(𝐶 /𝑂 ) instead of close-to-close returns. Additionally, this 
concept allows for better comparability with the Parkinson estimator which, by definition, 
measures volatility only during the exchange session. Since we analyze percentage re-
turns, we compute the Parkinson estimator multiplied by 1002. Daily closing prices and 
open-to-close returns for the all analyzed future contracts are presented in Figure 1. 
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Figure 1. Daily closing prices and open-to-close returns of the investigated energy commodities. 

The descriptive statistics for daily returns and two considered proxies of volatility 
are presented in Table 1. The calculated means of returns are negative, despite the prices 
of all commodities (except natural gas) increased during the analyzed period. It stems 
from the fact that we analyze open-to-close returns instead of close-to-close ones. The ab-
solute value of the minimum and maximum returns are relatively high. The highest vola-
tility of returns (see standard deviations for returns) but also variation of volatility (see 
the standard deviations for both the squared returns and the Parkinson estimator) can be 
seen for natural gas, which is a well-known fact for this energy asset (see e.g., [71]. Crude 
oil is the second most volatile contract. Meanwhile, the lowest volatility is for gasoil and 
heating oil. 

Table 1. Summary statistics of daily returns, squared returns and values of the Parkinson estimator. 

Commodities Mean Min Max SD Skew Kurt LB 
Returns 

Crude oil −0.053 −8.624 9.742 2.190 -0.042 4.509 0.187 
Gasoil −0.019 −7.994 7.775 1.797 0.224 5.386 0.096 

Gasoline −0.034 −8.624 9.742 2.004 -0.13 4.492 0.205 
Heating oil −0.022 −10.226 7.776 1.852 0.182 4.994 0.103 
Natural gas −0.091 −14.484 17.216 2.364 0.260 7.242 0.147 

Squared returns 
Crude oil 4.799 0.000 94.905 8.993 4.212 27.429 0.000 

Gasoil 3.231 0.000 95.543 6.759 5.886 57.243 0.000 
Gasoline 4.018 0.000 104.575 7.517 4.751 40.042 0.000 

Heating oil 3.432 0.000 90.421 6.850 5.018 41.009 0.000 
Natural gas 5.597 0.000 296.392 13.926 11.445 197.959 0.000 

Parkinson estimator 
Crude oil 4.763 0.253 54.245 5.618 3.276 17.581 0.000 

Gasoil 3.432 4.245 43.255 4.245 3.848 23.695 0.000 
Gasoline 4.146 0.191 49.761 4.579 3.488 21.647 0.000 

Heating oil 3.355 0.204 36.649 3.887 3.549 20.646 0.000 
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Natural gas 5.581 0.262 162.507 8.354 9.635 154.035 0.000 
Note: Mean is arithmetic mean, Min is minimum, Max is maximum, SD is standard deviation, 
Skew is skewness, Kurt is excess kurtosis, LB denotes the p-value of the Ljung-Box test for 10 lags. 
The sample period is 2 January 2015 to 31 December 2019. 

The distributions of both proxies of volatility exhibit strong skewness and high kur-
tosis. Significantly higher variability can be seen for the squared returns than for the Par-
kinson estimator which indicates much stronger noise in the former. The autocorrelation 
of returns is weak and mostly insignificant. The autocorrelation of the squared returns 
and the Parkinson estimator is very high and significant, much stronger for the latter 
measure of volatility. These results shows that the Parkinson estimator can be useful as 
the volatility measure. 

3.2. Forecasting Procedure 
We compared the forecasting performance of the GARCH models with SVR. We have 

not detected any significant dependencies in the conditional mean, which is the reason for 
modelling only the conditional variance. To estimate both the GARCH and SVR models, 
we used a rolling window and apply the following procedure. For the starting sample 
(i.e., 2 January 2015 to 30 December 2016) we estimate models and obtain one-day-ahead 
forecasts. Consecutively, we added one new observation to the estimation sample, while 
at the same time removing the oldest observation. Then, based on each estimation sample, 
we re-estimated the models and made forecasts. We repeat this procedure until we obtain 
forecasts for the three-year period from 3 January 2017 to 31 December 2019. In our pro-
cedure we consider a small estimation sample, because the persistence of the conditional 
volatility in large samples could be exaggerated by the existence of structural breaks in 
the GARCH parameters (see [72]). 

The considered GARCH models are GARCH-n, GARCH-t, EGARCH, GJR, 
APARCH, IGARCH and GARCH-M. The parameters of the models are estimated using 
the quasi-maximum likelihood method, except for the GARCH-t model, whereby the 
maximum likelihood method was applied. 

We consider autoregressive SVR models, which means that we calculate the variance 
forecasts 𝜎 ,  using the lagged squared returns as predictor variables: 𝜎 , = 𝑓(𝑟 , 𝑟 , … , 𝑟 ), (21) 

where 𝑙  is the lag length. In order to construct the SVR models the regressors 𝑟 , 𝑟 , … , 𝑟  were first standardized, i.e., the lagged squared returns were centered 
by subtracting their mean and divided by standard deviation. After applying the Model 
(21) we use reverse standardization of  ,  to calculate the final variance forecast. 

We applied two kernels in the SVR models: The linear and RBF ones and four values 
of lags: 𝑙 = 1, 𝑙 = 5, 𝑙 = 10 and 𝑙 = 15, however, we present only the results for lags 𝑙 =1 and 𝑙 = 15. The lag 𝑙 = 1 led to the simplest specification of the model, in which only 
the previous lagged squared return is used as the predictor variable. Obviously, higher 
lags led to a more general form of the model, which could potentially generate more ac-
curate forecasts. On the other hand, high lags could introduce spurious information to the 
model, and additionally, substantially increase computation time. Our calculations show 
that 𝑙 = 15 leads to slightly more accurate forecasts than 𝑙 = 5 and 𝑙 = 10 and it seems 
to be optimal when considering the accuracy of the forecasts and computation time. 

Finally, we consider four specifications of the SVR models: 
(1) SVR with the linear kernel and 𝑙 = 1 (hereafter SVR-lin-1), 
(2) SVR with the linear kernel and 𝑙 = 15 (SVR-lin-15), 
(3) SVR with the RBF kernel and 𝑙 = 1 (SVR-rbf-1), 
(4) SVR with the RBF kernel and 𝑙 = 15 (SVR-rbf-15). 

As stated before, the values of the 𝜀 and 𝐶 hyperparameters (and additionally 𝛾 in 
the case of the RBF kernel) must be determined. For this aim, we applied the grid search 
technique. This method consisted in constructing many models for different values of the 
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hyperparameters and selecting the optimal model on the basis of a validation set (we use 
the function fitrsvm in MATLAB R2015b to train the SVR models). We performed the grid 
search by considering consecutive values of 𝐶 = 0.5, 1, 1.5, … , 10, 𝜀 = 0.5, 0.6, 0.7, … , 2.5 
and 𝛾 = 2 , 2 , … , 2 , 2 . To evaluate the model for each combination of hyperparame-
ters, a 10-fold cross-validation procedure is applied. According to this approach, the in-
vestigated sample was randomly partitioned into 10 equal-sized subsamples. Nine of 
them were used to construct the SVR model, while the remaining one was used to validate 
the model. To this end, the mean square error (MSE) was computed on the observations 
in the validation subsample. This procedure is repeated 10 times (for each of the 10 sub-
samples used as a test set), and the average of 10 values of the obtained MSEs was calcu-
lated. Finally, the hyperparameters that led to the smallest MSE were considered to be 
optimal. It is worth noting that the optimal hyperparameters were determined for each 
forecast separately. 

It should be emphasized that the computation of forecasts based on the SVR model 
(Equation (21)) does not ensure that it will always output non-negative values. In such 
cases we propose to take the previous squared return as the forecast, i.e.,  , = 𝑟 . 
However, situations where our models led to negative outputs are very exceptional. Such 
problem occurs only for natural gas, for which SVR-lin-15 leads to 9 (out of 759) negative 
forecasts. 

In the evaluation of forecasts we consider two proxies of volatility: the squared daily 
return and the Parkinson estimator. In Section 3.3 we present results for the squared daily 
return and Section 3.4 shows the results for the Parkinson estimator. Despite shortcomings 
of the squared daily return, we apply it due to its popularity in previous studies in which 
GARCH models have been compared with SVR models (see Introduction). 

The forecasts are evaluated based on two primary measures, namely, the mean 
squared error and the mean absolute error. 

The MSE is the most frequently used criterion in forecasting studies. It is written as, MSE = ∑ 𝜎 , − 𝜎 , , (22) 

where 𝜎 ,  is the proxy of volatility of returns and 𝜎 ,  is the variance forecasts at time 𝑡, 𝑇 is the number of forecasts. 
The MSE is robust to the use of a noisy volatility proxy (it yields the same ranking of 

competing forecasts using an unbiased volatility proxy, see e.g., [59]). 
The mean absolute error (MAE) is less sensitive to outliers, which is very important 

when evaluating extraordinary events. It is given as: MAE = ∑ 𝜎 , − 𝜎 , . (23) 

In order to assess whether the loss differentials between competing models are sta-
tistically significant two different tests are applied: the test of superior predictive ability 
(SPA) of Hansen [73] and the model confidence set (MCS) of Hansen et al. [74]. In the first 
test, it is checked whether each of the models considered is outperformed significantly by 
any of the alternatives. In this regard, the performance of the benchmark model relative 
to model 𝑘 can be described as, 𝑑 , =  𝐿(𝜎 , , 𝜎 , ) − 𝐿(𝜎 , , 𝜎 , ), 𝑘 = 1, … , 𝑚, 𝑡 = 1, … , 𝑇, (24) 

where 𝜎 ,  and 𝜎 ,  are the volatility forecasts from the benchmark model and model 𝑘, 
respectively, 𝐿(𝜎 , , 𝜎 , ), 𝐿(𝜎 , , 𝜎 , ) denote the loss functions, and 𝑚 is the number of 
competing models (excluding the benchmark model). In this study, we applied two 
measures, namely MSE and MAE, to calculate 𝐿(𝜎 , , 𝜎 , ). The null hypothesis of the SPA 
test is formulated as, 𝐻 : 𝐸 𝑑 , ≤ 0, for all 𝑘 = 1, … , 𝑚, (25) 

meaning that the benchmark model is the best forecasting model compared to any of the 
models 𝑘 = 1, … , 𝑚. The test statistic can be expressed as, 
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SPA = max √ , (26) 

where �̅�  is the mean of 𝑑 ,  and 𝜔  is a consistent estimator of the asymptotic variance. 
The objective of the MCS procedure is to determine the set of best models, denoted 

as 𝑀 , from a given collection of models, 𝑀. The set of the best models is defined as, 𝑀 ≡ 𝑖 ∈ 𝑀: 𝐸 𝑑 ≤ 0  for all 𝑗 ∈ 𝑀, (27) 

where 𝑑 = 𝐿(𝜎 , , 𝜎 , ) − 𝐿(𝜎 , , 𝜎 , ) is the loss differential for 𝑖, 𝑗 ∈ 𝑀. 
The null hypothesis is as follows, 𝐻 : 𝐸 𝑑 , = 0, for all 𝑖, 𝑗 ∈ 𝑀 , (28) 

where 𝑀 ⊂ 𝑀. The testing procedure begins with initially setting 𝑀 = 𝑀. Then the null hy-
pothesis is tested at a given significance level. If the null is not rejected then the 𝑀 = 𝑀 , 
otherwise the model that contributes most to the test statistic is removed from 𝑀  and the 
whole procedure is repeated until there is no more models to be removed. The 𝑀  is then 
referred to as the model confidence set (MCS). The best models are selected with a given level 
of confidence in terms of a criterion for the loss function that is user-specified. In our case we 
use the MSE and MAE as such criteria. 

3.3. Results for the Squared Daily Return Used as a Proxy of Volatility 
In this Section we evaluate the forecasts by applying the squared daily return as a 

proxy of volatility. The results are given in Tables 2 and 3, for the MSE, and MAE 
measures, respectively. 
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Table 2. Evaluation of the variance forecasts in terms of the MSE measure for the squared daily returns used as a proxy of volatility. 

Model 
Crude Oil Gasoil Gasoline Heating Oil Natural Gas 𝐌𝐒𝐄 SPA  MCS 𝐌𝐒𝐄 SPA  MCS 𝐌𝐒𝐄 SPA  MCS 𝐌𝐒𝐄 SPA  MCS 𝐌𝐒𝐄 SPA  MCS 

GARCH-n 3.862 0.155 0.294 * 0.727 0.869 0.851 * 2.854 0.589 0.614 * 1.372 0.800 0.951 * 24.575 0.695 0.651 * 
GARCH-t 3.860 0.210 0.325 * 0.727 0.843 0.851 * 2.889 0.337 0.568 * 1.379 0.351 0.839 * 24.306 0.681 0.651 * 
EGARCH 3.777 0.799 0.656 * 0.726 0.723 0.851 * 2.849 0.397 0.614 * 1.360 0.886 1.000 * 26.036 0.206 0.651 * 

GJR 3.754 0.945 1.000 * 0.739 0.197 0.773 * 2.807 0.747 0.750 * 1.379 0.334 0.893 * 24.231 0.501 0.651 * 
APARCH 3.819 0.453 0.615 * 0.720 0.960 1.000 * 2.790 0.896 1.000 * 1.416 0.130 0.428 * 24.428 0.221 0.651 * 
IGARCH 3.915 0.005 0.133 * 0.731 0.519 0.851 * 2.911 0.119 0.540 * 1.402 0.032 0.343 * 24.708 0.422 0.651 * 

GARCH-M 3.896 0.171 0.133 * 0.734 0.554 0.851 * 2.865 0.180 0.577 * 1.381 0.048 0.789 * 24.656 0.372 0.651 * 
SVR_lin_1 3.968 0.154 0.185 * 0.757 0.000 0.170 * 2.884 0.450 0.600 * 1.366 0.770 0.954 * 26.128 0.051 0.651 * 
SVR-lin-15 3.918 0.387 0.350 * 0.729 0.629 0.851 * 2.891 0.401 0.577 * 1.362 0.902 0.954 * 25.680 0.844 1.000 * 
SVR-rbf-1 3.926 0.169 0.129 * 0.762 0.065 0.577 * 2.893 0.306 0.568 * 1.390 0.168 0.647 * 26.073 0.064 0.651 * 
SVR-rbf-15 3.957 0.173 0.128 * 0.757 0.051 0.275 * 3.013 0.007 0.444 * 1.410 0.010 0.193 * 25.543 0.380 0.651 * 

Note: The values of MSE are multiplied by 10−1, the lowest values of MSE for each energy commodity are marked in bold, * indicates that models belong to MCS 
with a confidence level of 0.90. SPA and MCS denote the p-value of the SPA and MCS tests, respectively. The evaluation period is from 3 January 2017 to 31 December 
2019. 

Table 3. Evaluation of the variance forecasts in terms of the MAE measure for the squared daily returns used as a proxy of volatility. 

Model 
Crude Oil Gasoil Gasoline Heating Oil Natural Gas 𝐌𝐀𝐄 SPA  MCS 𝐌𝐀𝐄 SPA  MCS 𝐌𝐀𝐄 SPA  MCS 𝐌𝐀𝐄 SPA  MCS 𝐌𝐀𝐄 SPA  MCS 

GARCH-n 0.343 0.000 0.000 0.184 0.000 0.000 0.302 0.000 0.000 0.229 0.139 0.082 0.568 0.000 0.010 
GARCH-t 0.341 0.000 0.000 0.185 0.000 0.000 0.300 0.000 0.001 0.229 0.163 0.083 0.554 0.001 0.004 
EGARCH 0.330 0.023 0.000 0.175 0.721 1.000 * 0.302 0.024 0.003 0.224 0.968 1.000 * 0.590 0.000 0.000 

GJR 0.334 0.003 0.000 0.180 0.001 0.022 0.303 0.007 0.001 0.228 0.061 0.083 0.577 0.000 0.002 
APARCH 0.332 0.048 0.000 0.176 0.280 0.564 * 0.301 0.018 0.003 0.227 0.338 0.326 * 0.601 0.000 0.001 
IGARCH 0.353 0.000 0.000 0.183 0.000 0.002 0.308 0.001 0.000 0.234 0.007 0.020 0.579 0.000 0.001 

GARCH-M 0.342 0.000 0.000 0.202 0.000 0.000 0.303 0.000 0.000 0.234 0.000 0.009 0.569 0.001 0.005 
SVR_lin_1 0.326 0.000 0.000 0.198 0.000 0.000 0.290 0.096 0.197 * 0.234 0.000 0.042 0.486 0.512 0.679 * 
SVR-lin-15 0.317 0.568 1.000 * 0.190 0.000 0.000 0.288 0.915 1.000 * 0.229 0.184 0.142 * 0.464 0.720 1.000 * 
SVR-rbf-1 0.329 0.000 0.000 0.197 0.000 0.000 0.292 0.046 0.117 * 0.236 0.001 0.010 0.488 0.279 0.679 * 
SVR-rbf-15 0.339 0.000 0.000 0.195 0.000 0.000 0.314 0.000 0.000 0.238 0.001 0.005 0.531 0.000 0.110 * 

Note: The values of MAE are multiplied by 10−1, the lowest values of MAE for each energy commodity are marked in bold, * indicates that models belong to MCS 
with a confidence level of 0.90. SPA and MCS denote the p-values of the SPA and MCS tests, respectively. The evaluation period is from 3 January 2017 to 31 
December 2019. 
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Both for the MSE and MAE measures, the highest errors of the forecasts are for nat-
ural gas, while the lowest are for gasoil. It corresponds with the fact that these commodi-
ties have the highest, and the lowest volatility of daily returns, respectively (see Table 1). 
The values of MSE are considerably higher than of MAE because the former measure is 
more sensitive to outliers. 

Figure 2 depicts the one-day-ahead volatility forecasts for one selected commodity, 
namely crude oil. For greater clarity, we present the forecasts only for the two best models 
in their classes chosen according to the MSE criterion, i.e., SVR-lin-15 and GARCH-t. We 
found that the forecasts from the GARCH models are greater than those from SVR in times 
of high volatility. It relates to the observation that the GARCH models react more quickly 
and strongly to the past huge changes in volatility than the SVR models. That is the reason 
squared forecasting errors are higher for the SVR models than for the GARCH ones. These 
general conclusions are also valid for other analyzed energy commodities. 

 
Figure 2. One-day-ahead volatility forecasts and the squared daily returns for crude oil. 

Generally, the GARCH models have lower MSE values than the SVR models, but 
when it comes to MAE we cannot derive such general conclusion. However, according to 
the MAE measure the SVR-lin-15 model is often preferable. In order to assess whether 
these findings are statistically significant we apply the SPA and MCS tests (calculated p-
values are given in Tables 2 and 3, for the MSE, and MAE measures, respectively). 

The results of the SPA test for the MSE measure indicate that only the following mod-
els are outperformed significantly (at the 10% significance level) by any of the alternatives: 
IGARCH for crude oil, SVR-lin-1, SVR-rbf-1, SVR-rbf-15 for gasoil, SVR-rbf-15 for gaso-
line, IGARCH, GARCH-M, SVR-rbf-15 for heating oil and SVR-lin-1, SVR-rbf-1 for natural 
gas. According to the results of the MCS test, all models for all commodities belong to the 
model confidence set and there is no evidence to reject the null hypothesis of equal pre-
dictive ability. It means that the MCS test with the MSE criterion does not differentiate the 
examined models. 

In contrast to the results for MSE, the SPA test for the MAE measure rejects the null 
hypothesis for most cases, indicating that most models are outperformed significantly by 
any of the alternatives. The only exceptions are: SVR-lin-15 for crude oil, EGARCH, 
APARCH for gasoil, SVR-lin-15 for gasoline, GARCH-n, GARCH-t, EGARCH, APARCH, 
SVR-lin-15 for heating oil and SVR-lin-1, SVR-lin-15, SVR-rbf-1 for natural gas. Similar 
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conclusions come from the results of the MCS test and indicate that the most accurate 
forecast of volatility are obtained from SVR-lin-15 for crude oil, EGARCH, APARCH for 
gasoil, SVR-lin-1, SVR-rbf-1 for gasoline, EGARCH, APARCH, SVR-lin-15 for heating oil 
and SVR-lin-1, SVR-lin-15, SVR-rbf-1, SVR-rbf-15 for natural gas. It is worth noting that 
SVR-lin-15 is among the best models for all commodities except gasoil. It is difficult to 
choose the best model among the GARCH models for all analyzed commodities. How-
ever, forecasts based on the asymmetric GARCH models are often the most accurate. 

3.4. Results for the Parkinson Estimator Used as a Proxy of Volatility 
In this Section we evaluate the forecasting performance of the analyzed models by 

applying the Parkinson estimator as a proxy of volatility instead of the squared daily re-
turn. As it was discussed, this estimator is significantly more efficient than the classical 
variance estimator based on closing prices. For this reason we expect that the results of an 
evaluation of models may change significantly. The corresponding results are given in 
Tables 4 and 5 for the MSE, and MAE measures, respectively. 
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Table 4. Evaluation of the variance forecasts in terms of the MSE measure for the Parkinson estimator used as a proxy of volatility. 

Model 
Crude Oil Gasoil Gasoline Heating Oil Natural Gas 𝐌𝐒𝐄 SPA  MCS 𝐌𝐒𝐄 SPA  MCS 𝐌𝐒𝐄 SPA  MCS 𝐌𝐒𝐄 SPA  MCS 𝐌𝐒𝐄 SPA  MCS 

GARCH-n 1.231 0.015 0.047 0.587 0.017 0.104 * 0.922 0.391 0.600 * 0.430 0.289 0.143 * 7.568 0.923 0.939 * 
GARCH-t 1.244 0.025 0.031 0.582 0.128 0.116 * 0.961 0.056 0.341 * 0.434 0.125 0.113 * 7.428 0.906 0.948 * 
EGARCH 1.188 0.265 0.306 * 0.618 0.030 0.063 0.943 0.183 0.449 * 0.411 0.994 1.000 * 8.539 0.185 0.154 * 

GJR 1.147 0.935 1.000 * 0.621 0.034 0.029 0.910 0.543 0.668 * 0.430 0.110 0.113 * 7.359 0.985 1.000 * 
APARCH 1.197 0.364 0.306 * 0.586 0.111 0.116 * 0.896 0.634 0.668 * 0.451 0.118 0.074 7.691 0.404 0.703 * 
IGARCH 1.232 0.008 0.095 0.577 0.179 0.116 * 0.879 0.882 1.000 * 0.444 0.078 0.074 7.671 0.317 0.703 * 

GARCH-M 1.267 0.026 0.026 0.553 0.968 1.000 * 0.929 0.158 0.490 * 0.434 0.223 0.113 * 7.609 0.381 0.703 * 
SVR_lin_1 1.431 0.018 0.018 0.620 0.005 0.023 1.044 0.031 0.210 * 0.449 0.078 0.068 9.924 0.004 0.012 
SVR-lin-15 1.378 0.006 0.022 0.601 0.049 0.085 1.027 0.020 0.160 * 0.441 0.148 0.113 * 8.726 0.029 0.045 
SVR-rbf-1 1.405 0.002 0.002 0.631 0.018 0.034 1.052 0.027 0.041 0.464 0.022 0.049 9.865 0.007 0.058 
SVR-rbf-15 1.385 0.022 0.006 0.633 0.000 0.011 1.078 0.000 0.007 0.478 0.003 0.030 9.120 0.106 0.154 * 

Note: The values of MSE are multiplied by 10−1, the lowest values of MSE for each energy commodity are marked in bold, * indicates that models belong to MCS 
with a confidence level of 0.90. SPA and MCS denote the p-values of the SPA and MCS tests, respectively. The evaluation period is from 3 January 2017 to 31 
December 2019. 

Table 5. Evaluation of the variance forecasts in terms of the MAE measure for the Parkinson estimator used as a proxy of volatility. 

Model 
Crude Oil Gasoil Gasoline Heating Oil Natural Gas 𝐌𝐀𝐄 SPA  MCS 𝐌𝐀𝐄 SPA  MCS 𝐌𝐀𝐄 SPA  MCS 𝐌𝐀𝐄 SPA  MCS 𝐌𝐀𝐄 SPA  MCS 

GARCH-n 0.212 0.003 0.021 0.135 0.012 0.001 0.186 0.978 1.000 * 0.139 0.011 0.005 0.342 0.085 0.143 * 
GARCH-t 0.212 0.005 0.009 0.135 0.014 0.001 0.188 0.352 0.880 * 0.139 0.012 0.009 0.328 0.872 1.000 * 
EGARCH 0.198 0.991 1.000 * 0.134 0.017 0.007 0.191 0.308 0.761 * 0.131 0.791 1.000 * 0.370 0.000 0.004 

GJR 0.201 0.321 0.271 * 0.136 0.002 0.000 0.188 0.633 0.937 * 0.137 0.007 0.040 0.350 0.055 0.045 
APARCH 0.203 0.162 0.108* 0.129 0.694 1.000 * 0.186 0.865 0.998 * 0.133 0.364 0.412 * 0.382 0.000 0.001 
IGARCH 0.216 0.000 0.004 0.135 0.006 0.001 0.186 0.792 0.998 * 0.142 0.000 0.001 0.349 0.019 0.027 

GARCH-M 0.213 0.004 0.001 0.143 0.000 0.000 0.187 0.259 0.974 * 0.141 0.000 0.001 0.342 0.082 0.072 
SVR_lin_1 0.217 0.000 0.001 0.149 0.000 0.000 0.193 0.023 0.534 * 0.145 0.000 0.000 0.364 0.004 0.013 
SVR-lin-15 0.204 0.237 0.108 * 0.140 0.000 0.000 0.188 0.569 0.938 * 0.141 0.004 0.002 0.347 0.279 0.364 * 
SVR-rbf-1 0.219 0.000 0.000 0.149 0.000 0.000 0.195 0.003 0.330 * 0.147 0.000 0.000 0.359 0.024 0.018 
SVR-rbf-15 0.222 0.000 0.000 0.148 0.000 0.000 0.206 0.000 0.045 0.148 0.000 0.000 0.362 0.034 0.013 

Note: The values of MAE are multiplied by 10−1, the lowest values of MAE for each energy commodity are marked in bold, * indicates that models belong to MCS 
with a confidence level of 0.90. SPA and MCS denote the p-values of the SPA and MCS tests, respectively. The evaluation period is from 3 January 2017, to 31 
December 2019. 
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Both the MSE and MAE forecasting errors are significantly lower when the Parkinson 
estimator is used for the forecasts evaluation. The values of these measures are sometimes 
even more than three times lower than those obtained for the squared daily returns (com-
pare Tables 2 and 3). The highest errors of forecasts are for natural gas, while the lowest 
for heating oil and gasoil. 

Figure 3 depicts the one-day-ahead volatility forecasts for the same commodity as 
shown in Figure 2, namely crude oil. We present the forecasts only for the two best models 
in their classes chosen according to the MSE criterion, i.e., SVR-lin-15 and GJR. The main 
difference between Figures 2 and 3 is that the values of the Parkinson estimator are con-
siderably lower than the squared daily returns in the periods of high volatility. The find-
ings derived from Figure 3 are similar to those from Figure 2. One can see that the forecasts 
from the GARCH models are greater than those from the SVR ones in times of high vola-
tility. Moreover, the GARCH models fit even better to extreme changes in volatility than 
it is observed in the Figure 2. These general conclusions are also valid for the other inves-
tigated energy commodities. 

 
Figure 3. One-day-ahead volatility forecasts and values of the Parkinson estimator for crude oil. 

The results of the SPA test for the MSE measure show that the following models are 
not outperformed significantly by any of the alternatives: EGARCH, GJR, APARCH for 
crude oil, GARCH-t, APARCH, IGARCH, GARCH-M for gasoil, GARCH-n, EGARCH, 
GJR, APARCH, IGARCH, GARCH-M for gasoline, GARCH-n, GARCH-t, EGARCH, GJR, 
APARCH, GARCH-M, SVR-lin-15 for heating oil and all GARCH models with SVR-rbf-
15 for natural gas. The results of the MCS test are similar and the following models belong 
to the model confidence set: EGARCH, GJR, APARCH for crude oil, GARCH-n, GARCH-
t, APARCH, IGARCH, GARCH-M for gasoil, all GARCH models with SVR-lin-1, SVR-lin-
15 for gasoline, GARCH-n, GARCH-t, EGARCH, GJR, GARCH-M, SVR-lin-15 for heating 
oil and all GARCH models with SVR-rbf-15 for natural gas. According to the MSE meas-
ure the forecasts of volatility from the SVR models are generally inferior to the forecasts 
based on the GARCH models. 

When it comes to the MAE measure the conclusions are quite similar to those for the 
MSE criterion. Significantly more precise forecasts of volatility are based on: EGARCH, 
GJR, APARCH, SVR-lin-15 for crude oil, APARCH for gasoil, all GARCH models with 
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SVR-lin-15 (according to the SPA test) and all considered models except SVR-rbf-15 (ac-
cording to the MCS test) for gasoline, EGARCH, APARCH for heating oil, GARCH-t, SVR-
lin-15 (according to the SPA test) and GARCH-n, GARCH-t, SVR-lin-15 (according to the 
MCS test) for natural gas. Therefore for three energy commodities the SVR-lin-15 model 
is not significantly inferior to the GARCH models. It is difficult to choose the best model 
among the GARCH models for all analyzed commodities, however, similarly to the re-
sults in Section 3.3, forecasts based on the asymmetric GARCH models are often the most 
accurate. 

3.5. Discussion of the Results 
In this study, we apply two proxies of volatility to evaluate forecasts: The squared 

return and the Parkinson estimator. The former is an extremely noisy variance estimator 
and its usage can lead to an unreliable evaluation of models. That is the reason why the 
Parkinson estimator, which is significantly more accurate measure of volatility is also 
adopted. 

When the squared daily returns are used as an ex-post volatility measure the results 
are ambiguous. The MSE values are large (due to the existence of large outliers) and it is 
not possible to indicate significantly better models amongst analyzed ones. Meanwhile, 
the MAE criterion favors the SVR-lin-15 model for most commodities. On the other hand, 
when the Parkinson estimator is used as a proxy of volatility the forecasting errors are 
significantly lower, indicating more accurate predictions from the considered models and 
usually the obtained results favor the GARCH models over the SVR ones. Our findings 
indicate that the accuracy of volatility forecasts depends substantially on the applied 
proxy of volatility. This conclusion is important since in most papers concerning the ap-
plication of SVR models to volatility forecasting, only the squared daily returns (or a mov-
ing average of the daily squared returns) have been analyzed (e.g., [22–33]). Our results, 
obtained for the squared daily returns, confirm the conclusion formulated in these studies 
that SVR can lead to lower forecasting errors than the GARCH models. However, we ar-
gue that this forecasting superiority of SVR models is not unequivocal, since it depends 
on the measure used to evaluate the forecasting errors and is valid only for models with 
properly determined hyperparameters. 

4. Conclusions 
Due to global economic developments, emerging technological advances and eco-

nomic, geopolitical and environmental events a significant increase in volatility of energy 
commodities prices has occurred in the last 20 years. This highly volatile environment has 
become attractive to financial speculators, magnifying the risk on the energy commodities 
markets. That is reason there is a strong need to look for more accurate methods of vola-
tility forecasting for such commodities. 

In the paper we compare the forecasting performance of the GARCH-type models 
with support vector regression for futures contracts of selected energy commodities: 
Crude oil, natural gas, heating oil, gasoil and gasoline. The GARCH models are a standard 
tool applied in the volatility literature, while SVR is one of machine learning techniques 
which have been gaining huge popularity in recent years. 

We show that the accuracy of volatility forecasts depends substantially on the ap-
plied proxy of volatility. Our study confirms that SVR with properly determined hyperpa-
rameters can lead to lower forecasting errors than the GARCH models when the squared 
daily return is used as the proxy of volatility in an evaluation. Meanwhile, if we apply the 
Parkinson estimator which is a more accurate approximation of volatility, the results are 
different since they usually favor the GARCH models over SVR. 

Moreover, it is difficult to choose the best model among the GARCH models for all 
analyzed commodities, however, forecasts based on the asymmetric GARCH models are 
often the most accurate. While, in the class of the SVR models, the results indicate the 
forecasting superiority of the SVR model with the linear kernel and 15 lags. Precisely 
speaking, in 92% (i.e., 18 cases out of 20) the SVR model with the linear kernel and 15 lags 
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has the lowest MSE or MAE among SVR models, for all analyzed time series and for both 
volatility proxies. 

In the future, this study can be extended in several directions. Firstly, other machine 
learning methods like neural networks or hybrid models can be applied. Secondly, other 
proxies of volatility like the realized variance or the bi-power variation can be used for 
the evaluation of forecasts. Thirdly, the analysis can be done for the COVID-19 crisis that 
is, for a period with unheard-of volatility on the energy market. Fourthly, the comparison 
of the models can be performed for simulated data assuming different generating pro-
cesses. 
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