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H I G H L I G H T S  

• Comprehensive study of the forecasting methods for cryptocurrency volatility. 
• 12 popular methods compared including HAR, GARCH, LASSO, SVR, MLP, RF, LSTM. 
• No single best method for each cryptocurrency. 
• Different models perform better depending on error metric and forecast horizon. 
• Simple linear models can perform as well as more complex ML models.  
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A B S T R A C T   

Forecasting cryptocurrency volatility can help investors make better-informed investment decisions in order to 
minimize risks and maximize potential profits. Accurate forecasting of cryptocurrency price fluctuations is 
crucial for effective portfolio management and contributes to the stability of the financial system by identifying 
potential threats and developing risk management strategies. The objective of this paper is to provide a 
comprehensive study of statistical and machine learning methods for predicting daily and weekly volatility of the 
following four cryptocurrencies: Bitcoin, Ethereum, Litecoin, and Monero. Several models and forecasting 
methods are compared in terms of their forecasting accuracy, i.e., HAR (heterogeneous autoregressive), ARFIMA 
(autoregressive fractionally integrated moving average), GARCH (generalized autoregressive conditional het
eroscedasticity), LASSO (least absolute shrinkage and selection operator), RR (ridge regression), SVR (support 
vector regression), MLP (multilayer perceptron), FNM (fuzzy neighbourhood model), RF (random forest), and 
LSTM (long short-term memory). The realized variance calculated from intraday returns is used as the input 
variable for the models. In order to assess the predictive power of the models considered, the model confidence 
set (MCS) procedure is applied. Our experimental results demonstrate that there is no single best method for 
forecasting volatility of each cryptocurrency, and different models may perform better depending on the specific 
cryptocurrency, choice of the error metric and forecast horizon. For daily forecasts, the method that is always 
found in a set of best models is linear SVR, while for weekly forecasts, there are two such methods, namely FNM 
and RR. Furthermore, we show that simple linear models such as HAR and ridge regression, perform not worse 
than more complex models like LSTM and RF. The research provides a useful reference point for the development 
of more sophisticated models.   

1. Introduction 

Forecasting volatility of financial time series has garnered significant 
attention both from researchers and practitioners, including investors, 

risk managers, and policymakers. The relevance of this issue is due to the 
wide range of its practical applications in investment process, including 
risk management, portfolio optimization, and option pricing. However, 
forecasting volatility of financial series, due to its specific properties, is 
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not a trivial task. Such features as a very large share of noise in price 
fluctuations, the conditional heteroscedasticity of returns, the signifi
cant influence of market microstructure, a large number of outliers, the 
presence of different time scales of investors cause that even more 
advanced methods have difficulties in achieving a high forecasting ac
curacy. An even more difficult task is to forecast cryptocurrency vola
tility. Cryptocurrencies came into existence as a digital payment 
medium but their volatility is completely different than the volatility of 
fiat money. 

Cryptocurrencies are highly volatile in comparison to traditional 
currencies (e.g., [11]), experience explosive and bubble behaviours in 
multiple periods [15,24,29,37], contain periods of very huge volatility 
(see [22]) and exhibit speculative behaviour [10,12]. These properties 
are caused by various reasons. Unlike traditional currencies, crypto
currencies are not issued by central banks and, therefore, they are not 
attached to a specific country’s economy. Their value is not based on any 
tangible asset. Periods of huge volatility are often connected with 
cybercrimes, hacks, unsuccessful fork attempts and regulatory disori
entation [18,22]. The intrinsic speculative characteristics of the in
vestments, the velocity of transactions, and the unregulated 
environment are also important causes of higher volatility of crypto
currencies. Urquhart, Lucey [79] mention nine great challenges which 
need to be addressed before electronic currencies can become main
stream. One of them is how to manage the huge volatility of crypto
currencies. In order to efficiently manage volatility, we must have tools 
that predict this volatility well. In this paper, we address this problem 
applying several methods which belong to the superior forecasting 
methods for other financial assets. 

Since volatility is an unobservable variable, it has to be estimated. 
Before high frequency data becomes widely available, daily squared 
return, calculated from daily closing prices (Ct) as: 

r2
t = (ln(Ct/Ct− 1))

2
, (1)  

has been commonly used as a proxy of daily variance (see e.g., [68]). 
Andersen, Bollerslev [4] showed that although the squared daily return 
is an unbiased estimator of the variance of return, it is also extremely 
noisy. A significantly more accurate measure of volatility is the realized 
variance (RV) calculated from intraday prices: 

RVd,t =
∑K

k=1
r2

k,t , (2) 

where rk,t is the intraday return, K is the number of intraday obser
vations during a day. 

The most popular class of models which is used to forecast volatility 
are GARCH-type (generalized autoregressive conditional hetero
scedasticity) models. These models use daily squared return as the 
volatility estimator. However, intraday data contain more information 
about volatility than daily data, therefore the application of the realized 
variance provides much better forecasting ability than the use of daily 
squared return (see e.g., [5,6,53]). In particular, many studies have 
shown that HAR (heterogeneous autoregressive) and ARFIMA (autore
gressive fractionally integrated moving average) models, which use the 
realized variance to estimate volatility offer better forecasting ability 
than GARCH-type models (see e.g., [13,17,53,67]). For these reasons, we 
analyse the realized variance in our research and this approach distin
guishes our study from many others in the literature which are based on 
daily closing prices. 

Standard volatility models like GARCH do not fit well to the crypto
currency time series. For example, Charles, Darné [19] analysed Bitcoin 
prices and found that GARCH-type models are rejected because either the 
parameters are not statistically significant or the stationarity condition is 
not satisfied. Moreover, the results on the filtered returns showed that 
such models are not able to cope with jumps in volatility. Therefore, more 
advanced methods like machine learning (ML) methods have been pro
posed as an alternative. The importance of such algorithms in financial 
time series forecasting has increased considerably in the last several years 

[30,33,64,75]. ML models offer an advantage over statistical parametric 
models as they do not rely on prior assumptions about the data’s under
lying structure and have the ability to capture nonlinear patterns in time 
series. These models are flexible and adaptable, improving their perfor
mance through a training process. To further enhance their effectiveness, 
ML models can be complemented with time series decomposition 
methods and sophisticated optimization methods. Additionally, ensem
bling techniques are employed to aggregate model predictions, resulting 
in improved forecasting accuracy (e.g., [26,35]). ML methods have been 
applied for cryptocurrencies in many applications such as, for instance, 
price prediction, volatility prediction, automated trading, mining, ano
nymity and privacy, fraud detection, and security (see [73]). Given the 
scope of our research, our focus is limited to volatility studies that spe
cifically compare the forecasting accuracy of different methods. 

The research with the application of ML methods to analyse volatility 
of cryptocurrencies can be divided into two main parts. The first one use 
daily squared return as the volatility estimator, and the second one – the 
realized variance. Papers from this first group, which is more numerous, 
are: Kristjanpoller, Minutolo [54] – hybrid GARCH models with multi
layer perceptron (MLP) and separate GARCH-type models for Bitcoin 
(BTC), Peng, Albuquerque, de Sá, Padula, Montenegro [66] – hybrid 
GARCH models with Support Vector Regression (SVR), and separate 
GARCH-type models for BTC, Dash, Ethereum (ETH), Khaldi, El Afia, 
Chiheb [51] – MLP, Elman neural network (ENN)1, GARCH-type models 
for BTC, Alqaralleh, Abuhommous, Alsaraireh [2] – MLP, GARCH-type 
models for BTC, Dash, Litecoin (LTC), Monero (XMR), Ripple (XRP), 
Seo, Kim [74] – hybrid GARCH models with MLP2 and separate 
GARCH-type models for BTC, Aras [7] – meta-learning method based on 
GARCH-type models with SVR, MLP, random forest (RF), and separate 
GARCH-type models for BTC, Aras [8] – hybrid GARCH models with 
MLP, SVR, RF, K-nearest neighbours algorithm, and separate 
GARCH-type models for BTC, Shen, Wan, Leatham [76] – gated recur
rent unit (GRU) with MLP, GARCH-type models, exponential weighted 
moving average (EWMA) for BTC, D’Amato, Levantesi, Piscopo [25] – 
nonlinear autoregressive neural network, Jordan neural network, 
self-exciting threshold autoregressive model (SETAR) for BTC, ETH, 
XRP, Lu, Liu, Lai, Cui [60] – long short-term memory (LSTM), GARCH 
for BTC, Zahid, Iqbal, Koutmos [84] – hybrid GARCH models with 
LSTM, GRU and Bidirectional LSTM and separate GARCH-type models 
for BTC, Amirshahi, Lahmiri [3] – hybrid GARCH models with feed 
forward neural networks (DFFNNs) and LSTM and separate GARCH, 
DFFNNs, LSTM models for selected 27 cryptocurrencies, Khan, Khan, 
Shaikh [52] - neural network autoregressive, cubic smoothing spline, 
group method of data handling neural network for BTC, ETH, XRP and 
Tether, Pratas, Ramos, Rubio [69] - MLP, recurrent neural networks, 
LSTM, GARCH models for BTC. 

The second group of applications, which is less numerous, is based on 
realized variances. It includes among others: Guo, Bifet, Antulov- 
Fantulin [42] – RF, extreme gradient boosting (XGT), elastic-net, 
Gaussian process, LSTM, EWMA, GARCH-type models, structural time 
series model, autoregressive integrated moving average (ARIMA), tem
poral mixture models for BTC, Miura, Pichl, Kaizoji [61] – MLP, GRU, 
LSTM, convolutional neural network (CNN), SVR, ridge regression (RR), 
HAR for BTC, Gkillas, Tantoula, Tzagarakis [38] – hybrid HAR model 
with RF for BTC, Lehrer, Xie, Yi [58] – LASSO, regression tree, boosting 
tree, bagging tree, RF, SVR, least squares SVR, HAR for BTC, Li [59] – 
RF, HAR for BTC), Qiu [70] – complete subset regression (CSR), Mallows 
model averaging estimator (MMA), least absolute shrinkage and selec
tion operator (LASSO), least squares support vector regressions (LSSVR), 
complete subset least squares support vector regressions (LSSVRCS), 

1 MLP and ENN were based on realized variance but this measure was 
calculated from daily returns.  

2 MLP methods were based on realized variance but this measure was 
calculated from daily returns. 
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HAR for BTC, Rodikov, Antulov-Fantulin [72] – LSTM, HAR, 
GARCH-type models, EWMA, ARIMA for BTC, ETH, García-Medina, 
Aguayo-Moreno [34] – MLP, LSTM, hybrid GARCH models with LSTM, 
separate GARCH models for BTC, ETH, LTC, Bitcoin Cash, Tether, Eos, 
Binance Coin, Bitcoin SV, Stellar, Tron. 

In the above studies, volatility forecasts based on ML methods were 
usually more accurate than forecasts derived from traditional para
metric models like GARCH-type models, EWMA or ARIMA. Moreover, 
the selected ML methods often performed better than the HAR model. It 
is also worth emphasizing that hybrid models were superior to indi
vidual methods. Due to the limited number of forecasting methods used 
in each study and the differences between conducted research in terms 
of investigated time series, prediction horizons and the structure of re
gressors in the models, the formulated results are largely incomparable 
and can only provide a limited basis for making general conclusions 
about the usefulness of available methods for predicting the volatility of 
cryptocurrencies. The lack of clear guidance in the literature on the 
usefulness of existing forecasting methods raises the need for extensive 
comparative research in this area. The present work is part of such 
research, as its objective is to provide a comprehensive study of statis
tical and machine learning methods for predicting daily and weekly 
volatility of the most popular cryptocurrencies. 

This study has four main contributions. Firstly, we compare a large 
group of statistical and ML methods for prediction of cryptocurrencies 
volatility. We use the following methods: HAR, HAR with robust esti
mation (HAR-R), ARFIMA, GARCH, LASSO, ridge regression, linear SVR, 
radial basis function SVR, MLP, the fuzzy neighbourhood model (FNM), 
RF and LSTM. Most of the previous studies were performed only for 
Bitcoin. On the other hand, in analyses completed for higher number of 
cryptocurrencies [2,3,25,34,66]) only a small number of ML methods 
was used. According to our knowledge, our study is the most compre
hensive in terms of the number of methods applied to several crypto
currencies. Christensen, Siggaard, Veliyev [21] used a broad selection of 
the most widely applied ML methods for the stocks of the Dow Jones 
Industrial Average index. We apply even broader group of methods, 
including twelve popular statistical and ML methods, to forecast daily 
and weekly volatility of Bitcoin, Ethereum, Litecoin and Monero. 

Secondly, we concentrate on the models where volatility is estimated 
using realized variance, calculated from intraday prices. We compare 
this approach with the most popular GARCH model which uses daily 
squared return as the volatility estimator. We demonstrate that forecasts 
obtained from the GARCH model are poor for cryptocurrencies and this 
model is inferior to models based on the realized variance. 

Thirdly, we show that there is no single best method for forecasting 
volatility of each cryptocurrency as our statistical analysis always 
identified multiple methods within the sets of best models. For daily 
forecasts the method that is always found in such a set of models based 
on the MSE and MAE measures is SVR, while for weekly forecasts there 
are two such methods, namely FNM and RR. 

Fourthly, we demonstrate that forecasts based on simple methods, 
such as HAR or RR, are not significantly worse than forecasts obtained 
from some more advanced and complex methods like LSTM or RF. 

The rest of the paper is organized in the following way. In Section 2 
we describe the models and methods considered. Section 3 presents the 
analysed data and shows its summary statistics. In Section 4 we depict 
the forecasting procedure, evaluate the performance of the methods 
adopted for daily and weekly forecasts and discuss the results. The last 
section concludes. 

2. Applied methods 

The aim of this paper is to compare popular statistical and ML 
methods in forecasting volatility of cryptocurrency returns. We 
concentrate on the realized variance as the volatility estimator, for the 
reason that it is a significantly more accurate measure of volatility than 
daily squared returns [4]. We apply the realized variance as a proxy of 

ex-post volatility in the process of forecasts evaluation. Moreover, in all 
the considered models, except GARCH – which is based on daily returns 
– the realized variance is also the input variable for the calculation of 
volatility forecasts. 

We include the weekly and monthly average realized variances as 
additional input variables in the models that allow for supplementary 
inputs, alongside the daily realized variance. Previous research, such as 
Corsi [23], has demonstrated the relevance of these variables in 
modelling and forecasting financial market volatility. The weekly and 
monthly average realized variances can be described, respectively, as: 

RVw,t =
RVd,t− 6 + RVd,t− 5 + … + RVd,t

7
, (3)  

RVm,t =
RVd,t− 29 + RVd,t− 28 + … + RVd,t

30
. (4) 

We use 7 and 30 days averages because the cryptocurrency market is 
open every day of the week and month. 

In addition to using RVd,t , RVw,t and RVm,t as input variables, we also 
explored alternative approaches such as using 30 lags of RVd,t . However, 
these alternative approaches did not improve the accuracy of our fore
casts, and they increased the computational time. In order to ensure 
positive forecasts of volatility, we apply a logarithmic transformation to 
all realized variances. Thus, the models based on daily, weekly and 
monthly average realized variances can be generally expressed as 
lnRVd,t = f(lnRVd,t− 1, lnRVw,t− 1, lnRVm,t− 1), as illustrated in Fig. 1. The 
forecasting procedure, utilizing a 23-month rolling window, is explained 
in detail in Section 4.1. 

We forecast daily and weekly volatility. For this purpose, we utilize 
ten types of models (in twelve variants) with diverse properties and 
characteristics. The first three models, i.e., HAR, ARFIMA, and GARCH, 
are classical statistical autoregressive models commonly employed in 
finance and economics. They primarily capture linear relationships in 
the data. HAR is specifically designed for forecasting realized volatility, 
while ARFIMA has a broader range of applications and can model both 
short-term and long-term dependencies. GARCH models are developed 
specifically for volatility modelling and forecasting, taking into account 
the conditional heteroscedasticity in financial time series. LASSO and 
RR are general-purpose linear models equipped with mechanisms to 
reduce model variance and enhance generalization. They employ 
different regularization terms. 

The remaining five models are nonlinear ML models. SVR is a 
powerful technique for handling nonlinear regression problems by 
finding an optimal hyperplane in a higher-dimensional space using 

Fig. 1. The input and output data used in the forecasting models.  
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kernel functions. MLP constructs the regression function by combining 
activation functions of hidden nodes through linear combination. These 
functions are learned to achieve the best fit for the model. FNM, on the 
other hand, is a non-parametric regression model that combines training 
targets with weights expressing similarity between the current input 
pattern and the training patterns. RF is an ensemble learning method 
that aggregates multiple decision trees to make predictions. Each deci
sion tree in the forest produces slightly different regression function 
based on different splits of the data. The trees are grown in a hierarchical 
manner and can be linearized into interpretable decision rules. Lastly, 
LSTM is a sophisticated and advanced model belonging to the family of 
recurrent neural networks. It excels at capturing both short-term and 
long-term dependencies in sequential data by utilizing internal states to 
store information over extended periods and by employing a gating 
mechanism for processing temporal information. 

These ten types of models encompass a range of methodologies, 
allowing us to leverage their respective strengths and capabilities for 
volatility forecasting tasks. Below we present a short description of all 
the models. 

2.1. Heterogeneous autoregressive model (HAR) 

The HAR model of realized volatility was introduced by Corsi [23]. 
The main idea behind this model is to use different volatility compo
nents each of which is generated by actions of different types of market 
participants. For this purpose, the model combines volatility measures 
over different time horizons. Despite of a simple AR-type structure the 
HAR model is able to capture key properties of volatility of financial 
assets like heteroscedasticity, long memory and heterogeneity. We use 
the model with the log transformation of realized variances: 

lnRVd,t = γ0 + γ1lnRVd,t− 1 + γ2lnRVw,t− 1 + γ3lnRVm,t− 1 + εt. (5) 

This specification guarantees positive forecasts of volatility and 
additionally reduces the impact of outliers on the estimation results. We 
use two methods for estimation of parameters in the HAR model, namely 
ordinary least squares and robust estimation. In the latter case, the 
model is marked as HAR-R. For forecasts of weekly volatility, the daily 
forecasts are calculated recursively for each day of the week. 

2.2. Autoregressive fractionally integrated moving average model 
(ARFIMA) 

The ARFIMA model was proposed by Granger, Joyeux [39] and 
Hosking [49]. It generalizes the ARIMA model by allowing a non-integer 
value of the difference parameter. The ARFIMA model is useful in 
modelling time series with long memory. Such a property possesses the 
realized volatility that is why this model is applied for volatility 
modelling of financial time series. The ARFIMA(p, d, q) model for real
ized variance can be presented as: 
(

1 −
∑p

i=1
ϕiB

i

)

(1 − B)dlnRVt =

(

1 +
∑q

j=1
θjBj

)

εt, (6)  

where d is the difference parameter, B denotes the lag (or backshift) 
operator (Bsxt = xt− s), εt is the innovation process, the fractional dif
ference operator (1 − B)d is defined in the following way: 

(1 − B)d
=
∑∞

k=0

(
d
k

)

(− B)k
. (7) 

The ARFIMA process described by formula (6) is stationary when d <

0.5 and all roots of equation 
(
1 −
∑p

i=1ϕiBi
)

lie outside the unit circle. If 
d ∈ (0, 0.5), then the ARFIMA process is called a long memory process. 
For estimation of parameters, we use the maximum likelihood method 
and apply the model with lags one, i.e., the ARFIMA(1,d,1). To calculate 
weekly forecasts, we use a similar approach to the HAR model. 

2.3. Generalized autoregressive conditional heteroscedasticity model 
(GARCH) 

The GARCH model of Bollerslev [14] is the most popular univariate 
volatility model. In contrary to other methods based on realized vari
ances, it is formulated on returns. The GARCH(p, q) model can be pre
sented as: 

εt|ψt− 1 ∼ N(0, ht), (8)  

ht = α0 +
∑q

i=1
αiε2

t− i +
∑p

j=1
βjht− j, (9)  

where εt is the innovation process from the conditional mean equation of 
returns, ψ t− 1 is the set of all information available at time t − 1, N is the 
conditional normal distribution and ht is the conditional variance. 

The standard restrictions for non-negativity of the conditional vari
ance are α0 > 0, αi ≥ 0, βj ≥ 0 (for i = 1,2,…,q; j = 1,2,…,p), however, 
weaker conditions can also be assumed (see [62]). For covariance sta
tionarity, the following condition has to be satisfied α1 + … + αq + β1 +

… + βp < 1. We use the maximum likelihood method for estimation of 
parameters. We apply the GARCH(1,1) model with lags one which is the 
most frequently used in empirical studies. The weekly forecasts are 
determined in the same way as in the HAR and AFRIMA models. 

2.4. Ridge regression (RR) and least absolute shrinkage and selection 
operator (LASSO) 

In order to estimate the parameters of the HAR model for the 
dependent variable yt = lnRVd,t (see Eq. (5)), we additionally applied 
the following two shrinking methods: RR and LASSO. In general, when 
the relationship between variables is close to linear, the least squares 
estimates will have low bias but may have high variance. This means 
that a small change in the training data can cause a large change in the 
least squares coefficient estimates [50]. As has been pointed out in the 
literature, shrinking the coefficient estimates towards zero can consid
erably reduce their variance [45,55]. The two best-known shrinking 
methods are RR [48] and LASSO [78]. Both of these methods control the 
magnitude of the coefficient estimates by adding a penalty to the sum of 
the residual sum of squares RSS =

∑N
t=1
(
yt − ŷt

)2, if the estimates 
become large. This penalty introduces a trade-off between the model 
variance and bias. By sacrificing some bias, one can often reduce the 
variance in order to increase the prediction accuracy of unbiased models 
[55]. 

The RR coefficients minimize a penalized residual sum of squares: 

RSSL2 =
∑N

t=1
(yt − ŷt)

2
+ λ
∑P

j=1
β2

j , (10)  

where βj (j = 1,2,…,P) are the coefficients of the model. The RR solu
tions can be calculated directly from the formula: 

β̂
ridge

=
(
XT X + λI

)− 1XT y. (11) 

A popular alternative to RR is LASSO. The LASSO estimate is defined 
by: 

RSSL1 =
∑N

t=1
(yt − ŷt)

2
+ λ
∑P

j=1

⃒
⃒βj

⃒
⃒. (12) 

It means that the L2 penalty 
∑P

j=1β2
j in RR is replaced in LASSO by the 

L1 penalty 
∑P

j=1

⃒
⃒βj
⃒
⃒. This latter constraint makes the solutions nonlinear 

in the yt and there is no closed form expression as in RR [45]. Moreover, 
the L1 penalty leads to some parameters equal to zero, which means that 
LASSO yields models that simultaneously use regularization to improve 
the model and to conduct feature selection (e.g., [50,55]). 
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In both methods, the tuning parameter λ ≥ 0 controls the amount of 
shrinkage and is determined separately. We select this hyperparameter 
on a validation set. In order to calculate the weekly forecasts, we 
recursively predict volatility for each day of the week. 

2.5. Support Vector Regression (SVR) 

Support vector regression model [81] is based on the support vector 
machine method [80], which was originally introduced to solve classi
fication problems. It combines the training efficiency and simplicity of 
linear algorithms with the prediction accuracy of the best nonlinear 
techniques [9,33]. It has been shown that SVR can be applied to 
high-dimensional or incomplete data and is robust to outliers [36,83]. 
Moreover, the computational complexity of SVR does not depend on the 
dimensionality of the input space [9]. 

The idea of SVR is to map the vectors of regressors x onto a high- 
dimensional feature space using some fixed (nonlinear) transformation 
and then to estimate the linear model 

f (x) =
∑m

j=1
ωjφj(x)+ b, (13)  

where m is the dimension of the space, φj(x) denote transformations, ωj 

are the coefficients and b is the bias term [20,30,57]. In order to estimate 
the coefficients of the SVR model the ε-insensitive loss function 

Lε(y, f (x) ) =
{

0, |y − f (x) | ≤ ε,
|y − f (x) | − ε, otherwise, (14) 

has been proposed [80]. It means that training points {(xt , yt) }

within the ε-margin have no loss, hence only points located outside the 
ε-margin are used as the support vectors to estimate the model. How
ever, the accuracy of approximation (measured by the function Lε) is not 
the only postulate taken into account in SVR. Besides it, SVR tries to 
reduce the model complexity by minimizing the formula ‖ω‖

2 
= ωTω, 

where ω = (ω1,ω2,…,ωd)
T. This optimization problem has the 

following solution: 

f (x) =
∑NSV

t=1

(
αt − α∗

t

)
K(xt, x), s.t. 0 ≤ αt ≤ C, 0 ≤ α∗

t ≤ C, (15) 

where αt and α∗
t are the Lagrange multipliers, NSV is the number of 

support vectors and K is the kernel function of the form (cf. [63]): 

K(xt, x) =
∑m

j=1
φj(x)φj(xt). (16) 

Any function satisfying the Mercer’s condition [80] can be used as 
the kernel. In our study we applied two kernel functions:  

• Linear (dot product) 

K(xt, x) = xt
T x, (17)    

• Radial basis function – RBF (Gaussian) 

K(xt, x) = exp
(
− γ‖xt − x‖2 )

. (18) 

In further sections, we denote the SVR model with the linear kernel 
by SVR-L and the model with the RBF kernel by SVR-G. 

For each predicted value, we retrained SVR models with new values 
of hyperparameters ε, C (and γ in case of the SVR-G model) using the 
grid-search procedure. In order to calculate the weekly forecasts we 
apply the same procedure as in the case of the models described above. 

2.6. Multilayer Perceptron (MLP) 

MLP is a type of neural network, which is widely used for regression 
problems due to its valuable properties. They include universal 
approximation property, learning capability, nonlinear modelling, 
massive parallelism, robustness in the presence of noise, and fault 
tolerance. 

Unlike the models described above, MLP produces forecasts for seven 
days ahead at once. Thus, it generates output vector ŷt =

[
lnR̂Vd,t ,…,

lnR̂Vd,t+6
]

based on input vector xt =
[
lnRVd,t− 1, lnRVw,t− 1, lnRVm,t− 1

]
. 

MLP architecture has three inputs, seven outputs and one nonlinear 
hidden layer. MLP is trained on historical data and fits a set of seven 
functions, f1(x), …, f7(x), which model forecasting relationships of 
different horizons. The function for the horizon k = 1,…,7 is expressed 
as follows: 

fk(x) =
∑m

j=1
vj,kφj(x)+ v0,k, (19)  

where m represents the number of hidden nodes, φj(x) is a j-th hidden 
node activation function: 

φj(x) = tanh(x) =
2

1 + exp
(

−

(
∑n

i=1
wi,jxi + w0,j

)) − 1, (20) 

n = 3 is the number of inputs, w and v are weights of the hidden 
nodes and output nodes, respectively. 

Approximation properties of MLP are dependent on the number of 
hidden nodes, m. We select this hyperparameter on a validation set. To 
prevent overfitting, we train MLP using the Levenberg–Marquardt al
gorithm with Bayesian regularization, which minimizes a combination 
of squared errors and weights. 

2.7. Fuzzy Neighbourhood Model (FNM) 

FNM is a nonparametric regression model, which takes into account 
all training patterns when constructing a regression surface [27]. The 
underlying assumption of FNM is as follows: similarity in space X implies 
similarity in space Y. It is assumed in this approach that the training 
pattern belongs to the neighbourhood of query pattern x with some 
degree of membership. The degree of membership is defined by a 
membership function which monotonically decreases with distance be
tween patterns. The degree of memberships are treated as weights for 
training patterns in the regression function defined as follows: 

f (x) =

∑N

t=1
μ(x, xt)yt

∑N

t=1
μ(x, xt)

, (21)  

where μ(x, xt) is a Gaussian-type function of membership of training 
pattern xt to the neighbourhood of query pattern x of the form: 

μ(x, xt) = exp

(

−

(
‖x − xt‖

σ

)2
)

, (22)  

where ‖‖ is a Euclidean norm and σ is a bandwidth parameter. 
Regression function (21) combines all training output patterns y with 

weights dependent on the distance between their corresponding x-pat
terns to the query pattern. Note that it is a vector-valued function pro
ducing vector y as a result. This vector includes forecasted values for 
seven days ahead. 
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The only hyperparameter in FNM is bandwidth σ, deciding about the 
smoothness of the regression function. It is selected on the validation set. 
Too small values of σ result in undersmoothing, whereas too large values 
result in oversmoothing. We make this hyperparameter dependent on 
data, expressing it as a function of the distance between the query 
pattern and the training patterns as follows: σ = ad, where a is a coef
ficient to adjust, and d is the median of Euclidean distance between the 
training input patterns and the query pattern. 

2.8. Random Forest (RF) 

RF is an ensemble learning method based on decision trees as the 
base models [16]. For regression problem, we focus on the regression 
RF, which grows and aggregates multiple regression trees. The method 
combines bagging with a random subspace method to construct a 
collection of noisy but approximately unbiased base models and thus 
reduce the prediction variance. The main issue of the ensemble learning 
is to generate appropriate diversity in the base models. A random sub
space method helps to increase diversity between trees by restricting 
them to work on different random subsets of the predictor space, while 
bagging generates additional diversity by building each tree in the forest 
from a bootstrap sample of the original dataset. 

RF produces an scalar output based on input pattern x, so for each 
forecast horizon k = 1, …, 7, an individual RF should be built. RF for 
horizon k is expressed as [45]: 

fk(x) =
1
p
∑p

j=1
Tk,j(x), (23)  

where p is the number of trees in a forest and Tk,j(x) is a response of the 
j-th tree of the k-th forest on the query pattern x. 

A tree is characterized by several parameters: split predictors and 
cutpoints at each node, and terminal-node (leaf) values. These param
eters are selected in the learning procedure based on the split criterion 
which is a mean square error for regression. The main RF hyper
parameters are the number of trees in the forest, p, the minimum number 
of observations in a leaf (or equivalent), q, and the number of predictors 
to select at random for each split, r. All hyperparameters control the 
bias-variance tradeoff of the model. We select p and q on the validation 
set, while r we assume as n/3, as the RF inventors recommend. 

2.9. Long Short-Term Memory (LSTM) 

LSTM is a modern recurrent neural network with gating mechanism 
[47]. Unlike the other ML models used in this study, it was designed for 
sequential data and it is capable of learning both short and long-term 
relationships in time series [46]. LSTM is equipped with recurrent 
cells that can maintain their states over time. Nonlinear ‘regulators’ 
called gates can control the flow of information inside the cell and so 
adapt the cell state, c, and the hidden state, h, to the current dynamics of 
the process. 

The LSTM network is composed of two layers: the LSTM layer and the 
linear layer. The LSTM layer approximates temporal dependencies in 
time series and produces state vectors. The linear layer transforms the 
hidden state vector h into the output vector y. The model fits seven 
functions at once, f1(x),…,f7(x), for each forecast horizon. The function 
for the horizon k is expressed as: 

fk(x) = vT
k h(x)+ v0,k, (24)  

where vk is an m-component weight vector of the k-th output node and 
v0,k is a node bias, m is the number of nodes in the LSTM gates, h(x) is a 
hidden state of LSTM: 

h(x) = LSTM(x;W) (25)  

and W are LSTM weights and biases. 

To improve learning ability of LSTM, the input and output variables 
are defined differently than for other models: 
xt =

[
ln(1+100RVd,t− 1), ln(1 + 100RVw,t− 1), ln(1+100RVm,t− 1)

]
, yt =

[
ln
(
1+100RVd,t

)
,…, ln

(
1+100RVd,t+6

) ]
. 

All weights and biases are learnable parameters. The most important 
hyperparameter, which we select on the validation set, is the number of 
nodes in each gate, m. It decides about the amount of information 
contained in the states. For more complex temporal relationships, more 
nodes are required. 

3. Description of data 

We apply the competing methods and models to four cryptocurrency 
rates: BTC/USD (Bitcoin), ETH/USD (Ethereum), LTC/USD (Litecoin), 
XMR/USD (Monero). When selecting assets, we are guided by two 
criteria. First, we choose the most heavily traded cryptocurrencies in 
order to limit the influence of market microstructure effects on volatility 
estimates. The second criterion is the length of the time series. This 
factor is important because the statistical evaluation requires an 
appropriate number of forecasts. 

We analyse data received directly from the crypto exchange Kraken. 
Data from coin-ranking sites can be questionable due to non-traded 
prices, mistakes in time stamps, use of non-fiat cross-rates and wash 
trading (see [1]). The data start from January 1, 2017 and end on 
December 31, 2021. For each day we estimate the daily realized vari
ance calculated as the sum of squares of intraday returns (Eq. (2)). Since 
cryptocurrencies are quoted 24 h a day and we take 5-min returns, the 
number of intraday observations used to calculate the realized variance 
is equal to 288. Fig. 2 presents the series of daily prices, returns, realized 
variances and logarithm of realized variances of all analysed crypto
currencies. We calculate daily returns as rt = ln(Ct/Ot), where Ct and Ot 
are daily closing and opening prices, respectively. 

Huge price increases are visible for BTC/USD and ETH/USD. More
over, two speculative bubbles are noticeable for prices of LTC/USD and 
XMR/USD. Large outliers are present both in returns and realized vari
ances. The biggest daily losses for all cryptocurrencies took place on 
March 12, 2020 as fears of the economic damage from the coronavirus 
pandemic took hold. 

Descriptive statistics of daily returns and realized variances are given 
in Table 1. 

All mean returns are positive and relatively high. The highest gains 
could be obtained for ETH/USD. Volatility of BTC/USD is clearly lower 
than volatility of other cryptocurrencies. However, the standard devia
tion of returns of all analysed digital assets is considerably larger in 
comparison to other assets. It is almost ten times higher than the stan
dard deviation of fiat currencies and about three times higher than the 
standard deviation of stocks and commodities (cf. [30,32]). All distri
butions are asymmetric, and display high kurtosis. These summary re
sults suggest that forecasting volatility of cryptocurrencies is a pretty 
difficult task. 

4. Experimental study 

4.1. Forecasting procedure 

In this section, we compare the forecasting performance of all the 
methods discussed in Section 2. To evaluate their effectiveness, we 
generate out-of-sample forecasts for both one-day ahead and one-week 
ahead volatility. 

For the daily forecasts, we apply the following procedure, based on a 
rolling window approach. We start with a training sample spanning from 
February 1, 2017, to December 31, 2018 (data from January 2017 is not 
included in this range because it is used for RVm and RVd calculation). 
We optimize and train the ML models and estimate the parameters of the 
statistical models based on this training sample. Using these models, we 
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Fig. 2. Price, return, realized variance and logarithm of realized variance of cryptocurrencies.  

Table 1 
Summary statistics of daily returns and realized variances of analysed cryptocurrencies.  

Rates Mean Minimum Maximum Standard deviation Skewness Excess kurtosis 

Daily returns 
BTC/USD 0.00218 -0.496 0.236 0.043 -0.850 14.756 
ETH/USD 0.00332 -0.585 0.256 0.057 -0.528 11.764 
LTC/USD 0.00181 -0.480 0.547 0.062 0.394 12.957 
XMR/USD 0.00133 -0.520 0.428 0.060 -0.376 12.664 

Daily realized variances 
BTC/USD 0.00222 0.000 0.111 0.005 10.527 185.259 
ETH/USD 0.00478 0.000 1.697 0.041 39.902 1661.728 
LTC/USD 0.00521 0.000 0.221 0.012 9.310 136.481 
XMR/USD 0.00549 0.000 0.178 0.011 7.914 91.421 

Note: the realized variance is estimated as the sum of squared of 5-minute returns. The analysed period is January 1, 2017 - December 31, 2021. 
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make one-day ahead forecasts for January 1, 2019. Subsequently, to 
incorporate new data and maintain a rolling window, we add one new 
observation to the training sample while removing the oldest one. With 
the updated training sample, we retrain the ML models, re-estimate the 
parameters of the statistical models, and generate forecasts for January 
2, 2019. This process is repeated until we obtain forecasts for the three- 
year period from January 1, 2019, to December 31, 2021. In total, this 
yields 1096 daily forecasts for each method. Forecasting procedure for 
generating one-day ahead forecasts is illustrated in Diagram 1. 

For the weekly forecasts, we follow a similar procedure. However, 
we only make forecasts once a week on Sundays. We forecast the vola
tility for each day of the following week, from Monday to Sunday, and 
calculate the weekly forecast as the sum of seven daily forecasts. In total, 
this results in 155 weekly forecasts for each method. 

The ML models were optimized using the training samples. From 
these samples the validation samples were selected to estimate gener
alization errors. Based on these errors, optimal values for the hyper
parameters were found. The errors reported in the tables of this section 
are the average errors obtained over a three-year test period. By aver
aging the errors, the impact of random initialization, which occurs in 
some ML models, is effectively mitigated. 

The evaluation of forecasts is performed on the basis of two basic 
measures, namely the mean squared error (MSE) and the mean absolute 
error (MAE). The MSE is the most frequently used criterion in fore
casting studies. The MSE is robust to the use of a noisy volatility proxy (it 
yields the same ranking of competing forecasts using an unbiased 
volatility proxy, see [43] and [65]). The MAE is less sensitive to outliers, 
which is very important when evaluating extraordinary events. 

In order to assess the predictive power of the models considered, the 
model confidence set (MCS) procedure of Hansen, Lunde, Nason [44] is 
applied. The objective of the MCS test is to identify the set of best 
models. Starting with the full set of models, the MCS procedure 
sequentially eliminates the models that are found to be significantly 
inferior until the null hypothesis of equal forecast accuracy is no longer 
rejected at the assumed significance level. Finally, MCS contains the best 
forecasting methods with a certain probability. We use this test for the 
twelve methods jointly. 

4.2. Results for daily forecasts 

In this section, we evaluate the daily volatility forecasts for all 
considered methods. The results are presented in Tables 2 and 3 for the 
MSE and MAE criteria, respectively. 

Both for the MSE and MAE measures, the lowest errors of the fore
casts are for BTC/USD, next for ETC/USD then for XMR/USD and LTC/ 
USD. It corresponds with the level of the standard deviation of crypto
currency returns (see Table 1). The values of RMSE are considerably 
higher than of MAE because the former measure is more sensitive to 
outliers. 

Generally, according to the rankings of the models considered, the 
most accurate volatility forecasts are based on the SVR-L model (for the 
MSE measure) and on the ARFIMA model (for the MAE criterion). To 
assess formally the relative performance of the models, we apply the 
MCS procedure (see Tables 2 and 3). For all cryptocurrencies several 
methods belong to the model confidence set. It means that there is no 
one method that is significantly better than others. The only model that 
is included in the set of the best models for all cryptocurrencies and both 
evaluation measures is SVR-L (eight times). The SVR-G is contained in 
such a set seven times and the HAR-R and ARFIMA models six times. On 
the other hand, the methods that are least often included in the set of 
best models are LSTM (zero times), FNM, RF (once) and GARCH (twice). 
Most often the size of the model confidence set is bigger for MAE than for 
the MSE criterion. 

Bergsli, Lind, Molnár, Polasik [13] demonstrated for BTC that the 
forecasts based on the GARCH models are less accurate than the fore
casts obtained from the HAR model. We extend this result and show that 
the HAR model based on the realized variance performs most often 
better than the GARCH model also for other cryptocurrencies. 

We consider two methods of estimation for the HAR model, namely 
the ordinary least squares and robust methods. The differences in 
evaluation measures between these two methods are very small and the 
application of the robust method does not increase significantly the 
forecasting accuracy in our analysis. 

Although the set of best models contains many models, it is worth 
noting that the lowest values of the MAE measure for all cryptocurren
cies are obtained from the ARFIMA model. We can conclude that 
modelling long memory of the realized variance by the ARFIMA model is 
beneficiary for volatility forecasts. 

Diag. 1. Procedure for generating one-day ahead forecasts.  
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For the robustness check of our results, we apply three additional 
evaluation measures, namely, the coefficient of determination from the 
Mincer-Zarnowitz regression (R2), the mean absolute percentage error 
(MAPE) and the quasi-likelihood loss function (QLIKE). These criteria 
are often used for an evaluation of volatility forecasts in empirical 
studies (see e.g., [65,68,82]). The results of these measures are given in 
Tables A.1-A.3 in Appendix. It is worth paying attention to relatively low 
values of R2 in comparison to fiat currencies, stocks and commodities (cf. 
[32,33]). These low values show how difficult it is to forecast crypto
currency volatility. The conclusions drawn from the additional evalua
tion measures are more or less similar to the results obtained applying 

the MSE and MAE criteria. Moreover, the differences between the 
considered models depend on the adopted measure. They are small for 
the QLIKE, MSE, MAE values, noticeable for the MAPE values and 
meaningful for the R2 values. 

Additionally, we assess the effectiveness of different methods in 
forecasting volatility under both low and high volatility conditions, 
comparing their performance against competitors. For this reason, we 
calculate the MAE measure for 5% of the lowest and separately for 5% of 
the highest values of realized variances. The results of this evaluation are 
given in Tables 4 and 5. Due to the much smaller number of such ob
servations, we no longer test the significance of these results. 

Table 2 
Evaluation of daily volatility forecasts based on the MSE measure and the MCS test.  

Method BTC/USD ETH/USD LTC/USD XMR/USD 

MSE Rank p-value MSE Rank p-value MSE Rank p-value MSE Rank p-value 

HAR  0.191  3 0.342 *  0.330  6 0.022  0.590  7 0.046  0.550  2 0.986 * 
HAR-R  0.192  4 0.342 *  0.331  7 0.005  0.590  6 0.261 *  0.552  4 0.007 
ARFIMA  0.195  6 0.014  0.329  5 0.736 *  0.587  5 0.363 *  0.555  6 0.007 
GARCH  0.215  12 0.001  0.315  1 1.000 *  0.620  10 0.021  0.542  1 1.000 * 
LASSO  0.200  9 0.014  0.350  9 0.005  0.580  1 1.000 *  0.556  7 0.000 
RR  0.193  5 0.014  0.329  4 0.022  0.581  3 0.647 *  0.556  8 0.000 
SVR-G  0.195  7 0.342 *  0.325  2 0.824 *  0.585  4 0.604 *  0.554  5 0.983 * 
SVR-L  0.191  2 0.350 *  0.326  3 0.736 *  0.580  2 0.647 *  0.550  3 0.986 * 
MLP  0.186  1 1.000 *  0.342  8 0.007  0.602  8 0.046  0.559  9 0.000 
FNM  0.198  8 0.014  0.363  10 0.005  0.623  11 0.005  0.605  11 0.000 
RF  0.206  10 0.014  0.363  11 0.005  0.613  9 0.023  0.602  10 0.000 
LSTM  0.207  11 0.000  0.398  12 0.000  0.685  12 0.000  0.631  12 0.000 

Note: The values of MSE are multiplied by 104, the lowest values of MSE are in bold, p-value is for the MCS test, * indicates that models belong to MCS with a confidence 
level of 0.90. The evaluation period is January 1, 2019 - December 31, 2021. 

Table 3 
Evaluation of daily volatility forecasts based on the MAE measure and the MCS test.  

Method BTC/USD ETH/USD LTC/USD XMR/USD 

MAE Rank p-value MAE Rank p-value MAE Rank p-value MAE Rank p-value 

HAR  0.102  1 1.000 *  0.147  3 0.520 *  0.209  6 0.024  0.166  4 0.738 * 
HAR-R  0.102  2 0.922 *  0.147  2 0.835 *  0.209  5 0.399 *  0.165  2 0.930 * 
ARFIMA  0.102  4 0.922 *  0.146  1 1.000 *  0.206  1 1.000 *  0.165  1 1.000 * 
GARCH  0.138  12 0.000  0.205  12 0.000  0.259  11 0.000  0.228  12 0.000 
LASSO  0.107  10 0.001  0.157  10 0.000  0.208  2 0.399 *  0.167  7 0.461 * 
RR  0.102  3 0.922 *  0.148  6 0.131 *  0.208  3 0.399 *  0.167  8 0.461 * 
SVR-G  0.106  9 0.198 *  0.147  4 0.520 *  0.211  8 0.002  0.165  3 0.930 * 
SVR-L  0.103  7 0.271 *  0.148  5 0.520 *  0.209  4 0.399 *  0.166  6 0.494 * 
MLP  0.103  5 0.922 *  0.149  7 0.131 *  0.211  7 0.002  0.166  5 0.668 * 
FNM  0.103  6 0.754 *  0.152  9 0.045  0.215  10 0.000  0.175  10 0.009 
RF  0.106  8 0.023  0.152  8 0.131 *  0.213  9 0.000  0.175  9 0.009 
LSTM  0.114  11 0.000  0.178  11 0.000  0.263  12 0.000  0.208  11 0.000 

Note: The values of MAE are multiplied by 102, the lowest values of MAE are in bold, p-value is for the MCS test, * indicates that models belong to MCS with a 
confidence level of 0.90. The evaluation period is January 1, 2019 - December 31, 2021. 

Table 4 
Evaluation of daily volatility forecasts based on the MAE measure for 5% of the lowest values of realized variances.  

Method BTC/USD ETH/USD LTC/USD XMR/USD 

MAE Rank MAE Rank MAE Rank MAE Rank 

HAR  0.161  7  0.394  5  0.477  7  0.658  11 
HAR-R  0.137  2  0.340  1  0.406  1  0.573  8 
ARFIMA  0.158  5  0.375  4  0.465  6  0.544  5 
GARCH  0.848  12  1.684  12  1.821  12  0.215  12 
LASSO  0.228  10  0.578  11  0.488  8  0.593  9 
RR  0.162  8  0.406  7  0.461  5  0.593  10 
SVR-G  0.136  1  0.368  2  0.452  4  0.512  3 
SVR-L  0.142  4  0.374  3  0.431  3  0.502  2 
MLP  0.139  3  0.399  6  0.504  9  0.550  6 
FNM  0.167  9  0.445  10  0.528  11  0.572  7 
RF  0.159  6  0.415  9  0.509  10  0.527  4 
LSTM  0.354  11  0.413  8  0.414  2  0.283  1 

Note: the values of MAE are multiplied by 103, the lowest values of MAE are in bold. The evaluation period is January 1, 2019 - December 31, 2021. 
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For low volatility, the most accurate forecast are obtained from the 
SVR-G, SVR-L and HAR-R models, and the least precise forecast are from 
GARCH, LASSO and FNM. SVR-L and SVR-G are again the best per
forming models when the realized variance is high. The least accurate 
forecasts of high volatility are based on the LSTM and RF methods. 

Fig. 3 shows examples of the daily forecasts produced by selected 
models for January 2019. It is clear from the figure that none of the 
methods is able to forecast big spikes in volatility. Furthermore, a 
notable delay in the forecast timeline relative to the actual target series 
is evident. 

4.3. Results for weekly forecasts 

The weekly volatility forecasts are evaluated in this section. The 
results are presented in Tables 6 and 7 for the MSE and MAE criteria, 
respectively. 

According to the MSE measure, BTC/USD has the lowest forecasting 
errors, next is ETC/USD then LTC/USD and XMR/USD. For the MAE 
criterion LTC/USD and XMR/USD switch places. Similarly like for daily 
forecasts, the values of RMSE are considerably higher than those of MAE 
because the former measure is more sensitive to outliers. 

Table 5 
Evaluation of daily volatility forecasts based on the MAE measure for 5% of the highest values of realized variances.  

Method BTC/USD ETH/USD LTC/USD XMR/USD 

MAE Rank MAE Rank MAE Rank MAE Rank 

HAR  1.025  4  1.361  6  1.820  5  1.552  2 
HAR-R  1.033  6  1.369  7  1.823  6  1.571  8 
ARFIMA  1.026  5  1.355  4  1.832  7  1.563  6 
GARCH  1.117  12  1.354  3  1.928  10  1.579  9 
LASSO  1.080  10  1.464  10  1.819  4  1.563  4 
RR  1.012  3  1.360  5  1.819  3  1.563  5 
SVR-G  1.045  7  1.347  1  1.803  1  1.492  1 
SVR-L  1.001  2  1.353  2  1.812  2  1.560  3 
MLP  0.993  1  1.390  8  1.858  8  1.567  7 
FNM  1.048  8  1.441  9  1.908  9  1.751  11 
RF  1.070  9  1.489  11  1.928  11  1.727  10 
LSTM  1.100  11  1.654  12  2.193  12  1.899  12 

Note: the values of MAE are multiplied by 102, the lowest values of MAE are in bold. The evaluation period is January 1, 2019 - December 31, 2021. 

Fig. 3. Examples of forecasts of the daily volatility.  
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Generally, both for the MSE and MAE, the most accurate forecasts of 
volatility are from the RR model. In order to evaluate the statistical 
significance of the results, the MCS procedure is applied. For each 
cryptocurrency several methods belong to the model confidence set. 
Only two models, FNM and RR, are included in the set of best models for 
all cryptocurrencies and both evaluation measures (eight times). The 
SVR-G belongs is contained in such a set seven times and the SVR-L, MLP 
and RF models six times. The methods that are least often included in the 
set of best models are LSTM (zero times), HAR-R and GARCH (one time). 
For XMR/USD cryptocurrency rate most models belong to the set of best 
models. 

Weekly forecasting errors are considerably higher than daily errors, 
for the MSE measure they are more than twenty times bigger and for the 
MAE criterion about seven times. Main conclusions from daily forecasts 
are also valid for weekly forecasts, however, as we pointed out, different 
models dominate in both cases. 

In the robustness check, we consider three additional evaluation 
measures: R2, MAPE, and QLIKE, the results of which are presented in 
Tables A.4-A.6 in the Appendix. Generally, the findings from these 
measures align with those obtained from MSE and MAE, with the 
exception of the GARCH model, which exhibits high forecast accuracy 
according to the QLIKE measure. 

Table 6 
Evaluation of weekly volatility forecasts based on the MSE measure and the MCS test.  

Method BTC/USD ETH/USD LTC/USD XMR/USD 

MSE Rank p-value MSE Rank p-value MSE Rank p-value MSE Rank p-value 

HAR  0.398  9 0.000  0.768  8 0.149 *  1.115  9 0.015  1.185  9 0.298 * 
HAR-R  0.405  10 0.000  0.784  9 0.000  1.137  10 0.000  1.195  10 0.048 
ARFIMA  0.388  7 0.061  0.746  7 0.149 *  1.068  8 0.094  1.157  6 0.663 * 
GARCH  0.391  8 0.573 *  0.819  11 0.013  1.163  11 0.094  1.491  12 0.002 
LASSO  0.408  11 0.000  0.804  10 0.013  1.038  3 0.831 *  1.146  4 0.663 * 
RR  0.378  2 0.582 *  0.720  2 0.480 *  1.034  1 1.000 *  1.125  1 1.000 * 
SVR-G  0.380  4 0.582 *  0.713  1 1.000 *  1.042  4 0.408 *  1.139  3 0.663 * 
SVR-L  0.380  3 0.582 *  0.723  3 0.480 *  1.037  2 0.831 *  1.134  2 0.663 * 
MLP  0.358  1 1.000 *  0.743  6 0.149 *  1.057  7 0.408 *  1.153  5 0.663 * 
FNM  0.383  6 0.171 *  0.735  5 0.168 *  1.055  6 0.408 *  1.159  7 0.587 * 
RF  0.383  5 0.171 *  0.726  4 0.168 *  1.047  5 0.408 *  1.170  8 0.048 
LSTM  0.430  12 0.000  0.922  12 0.000  1.479  12 0.000  1.408  11 0.000 

Note: The values of MSE are multiplied by 103, the lowest values of MSE are in bold, p-value is for the MCS test, * indicates that models belong to MCS with a confidence 
level of 0.90. The evaluation period is January 1, 2019 - December 31, 2021. 

Table 7 
Evaluation of weekly volatility forecasts based on the MAE measure and the MCS test.  

Method BTC/USD ETH/USD LTC/USD XMR/USD 

MAE Rank p-value MAE Rank p-value MAE Rank p-value MAE Rank p-value 

HAR  0.712  7 0.033  1.044  7 0.033  1.489  9 0.024  1.167  8 0.262 * 
HAR-R  0.730  9 0.000  1.062  8 0.008  1.516  10 0.021  1.152  6 0.753 * 
ARFIMA  0.703  5 0.625 *  1.025  5 0.585 *  1.438  6 0.082  1.130  1 1.000 * 
GARCH  0.881  12 0.000  1.415  12 0.000  1.693  11 0.000  1.661  12 0.000 
LASSO  0.750  10 0.000  1.114  10 0.000  1.411  2 0.872 *  1.147  2 0.840 * 
RR  0.688  1 1.000 *  1.015  3 0.744 *  1.406  1 1.000 *  1.149  4 0.840 * 
SVR-G  0.712  6 0.033  1.025  4 0.548 *  1.427  4 0.266 *  1.183  10 0.245 * 
SVR-L  0.714  8 0.003  1.011  2 0.744 *  1.431  5 0.082  1.163  7 0.697 * 
MLP  0.691  2 0.897 *  1.073  9 0.001  1.449  8 0.082  1.148  3 0.840 * 
FNM  0.699  4 0.853 *  1.001  1 1.000 *  1.423  3 0.872 *  1.152  5 0.753 * 
RF  0.697  3 0.897 *  1.031  6 0.494 *  1.441  7 0.082  1.169  9 0.316 * 
LSTM  0.856  11 0.000  1.332  11 0.000  2.009  12 0.000  1.577  11 0.000 

Note: The values of MAE are multiplied by 102, the lowest values of MAE are in bold, p-value is for the MCS test, * indicates that models belong to MCS with a 
confidence level of 0.90. The evaluation period is January 1, 2019 - December 31, 2021. 

Table 8 
Evaluation of weekly volatility forecasts based on the MAE measure for 5% of the lowest values of realized variances.  

Method BTC/USD ETH/USD LTC/USD XMR/USD 

MAE Rank MAE Rank MAE Rank MAE Rank 

HAR  0.858  6  7.260  7  10.485  8  8.892  11 
HAR-R  0.591  2  6.956  5  10.255  5  6.297  10 
ARFIMA  1.104  9  6.321  1  9.881  1  4.610  3 
GARCH  6.422  12  15.854  12  16.472  12  20.998  12 
LASSO  2.002  11  7.313  8  10.295  6  5.036  6 
RR  1.044  7  6.838  3  10.109  3  4.756  4 
SVR-G  0.586  1  7.120  6  10.900  11  4.481  2 
SVR-L  0.835  4  6.894  4  10.657  10  5.093  7 
MLP  1.060  8  7.848  11  10.100  2  4.429  1 
FNM  0.852  5  7.394  9  10.370  7  5.178  8 
RF  0.715  3  7.467  10  10.148  4  5.346  9 
LSTM  1.875  10  6.651  2  10.615  9  4.773  5 

Note: the values of MAE are multiplied by 103, the lowest values of MAE are in bold. The evaluation period is January 1, 2019 - December 31, 2021. 
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We calculate also the MAE measure for 5% of the lowest and 5% of 
the highest values of realized variances. These results are given in Ta
bles 8 and 9. 

Generally, the most accurate forecasts of low volatility are based on 
the RR and ARFIMA models, whereas the least precise forecasts are from 
the GARCH and HAR models. When volatility is high, the best 

forecasting models are LASSO, RR and ARFIMA, while the worst per
forming are the HAR-R and LSTM models. 

Fig. 4 shows examples of the weekly forecasts produced by selected 
models for the first 30 weeks of the test period (January-July 2019). It is 
clear from the figure that during the periods of increased volatility all 
models clearly underestimate it. As for daily forecasting, none of the 

Table 9 
Evaluation of weekly volatility forecasts based on the MAE measure for 5% of the highest values of realized variances.  

Method BTC/USD ETH/USD LTC/USD XMR/USD 

MAE Rank MAE Rank MAE Rank MAE Rank 

HAR  6.027  6  0.426  8  1.337  8  0.532  5 
HAR-R  6.016  5  0.439  9  1.364  10  0.564  10 
ARFIMA  6.082  8  0.413  5  1.241  2  0.494  2 
GARCH  6.181  10  0.558  11  1.307  7  0.437  1 
LASSO  6.372  11  0.357  1  1.227  1  0.498  3 
RR  5.883  3  0.412  4  1.247  3  0.534  6 
SVR-G  5.700  2  0.444  10  1.288  5  0.540  8 
SVR-L  5.902  4  0.415  7  1.269  4  0.550  9 
MLP  5.500  1  0.413  6  1.440  11  0.540  7 
FNM  6.060  7  0.412  3  1.301  6  0.503  4 
RF  6.107  9  0.399  2  1.346  9  0.569  11 
LSTM  6.526  12  0.690  12  2.037  12  1.060  12 

Note: the values of MAE are multiplied by 102, the lowest values of MAE are in bold. The evaluation period is January 1, 2019 - December 31, 2021. 

Fig. 4. Examples of forecasts of the weekly volatility.  

Table 10 
Training and prediction times for ML models in seconds.  

Method LASSO RR SVR-G SVR-L MLP FNM RF LSTM 

Matlab function fitrlinear fitrlinear fitrsvm fitrsvm train - TreeBagger trainNetwork 
Time 0.017 0.016 0.028 0.040 0.360 < 0.001 0.250 504/16.4/6.4 

Note: the times for LSTM are for training using CPU / NVIDIA GeForce GTX 1050 Ti 4 GB / NVIDIA Tesla V100 32 GB. 
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methods can predict spikes in volatility and delay is also observed in 
forecasts. 

4.4. Computation time 

Table 10 provides a comparison of the total time required for a single 
training session and for generating forecasts for the next seven days for 
the ML models. Additionally, this table references the Matlab functions 
that implement these models. The experiments were conducted using 
Matlab 2023a, on a computer equipped with a ten-core CPU (Intel(R) 
Core(TM) i7–6950X 3.00 GHz). Regarding LSTM, we present three 
distinct times: one for training using CPU, and two additional times for 
training using different GPUs, specifically the NVIDIA GeForce GTX 
1050 Ti 4 GB and NVIDIA Tesla V100 32 GB. 

Table 10 reveals distinct variations in computation time among the 
different forecasting models. Notably, FNM emerges as the fastest 
model, primarily because it is a lazy learner model that does not require 
training. However, it is important to highlight that FNM’s forecast 
calculation relies on computing distances between the query pattern and 
training patterns, which happens to be the most intricate and time- 
consuming operation within the FNM framework. Following closely, 
in terms of computation time, are the linear models with regularization, 
RR and LASSO. These models involve estimating only four parameters. 
Additionally, both methods employ an efficient fitrlinear implementa
tion, which swiftly minimizes objective functions. SVR-based models 
exhibit a slightly slower computation time than RR and LASSO. The 
fitrsvm implementation accommodates predictor data mapping using 
kernel functions and supports potent optimization algorithms, including 
the Sequential Minimal Optimization algorithm, Iterative Single Data 
algorithm, and L1 soft-margin minimization via quadratic programming. 
RF, on the other hand, requires even more training time than SVR due to 
being an ensemble model composed of numerous regression trees 
trained sequentially. The MLP neural model, trained using the back
propagation method with the Levenberg-Marquardt algorithm and 
Bayesian regularization, requires additional training time compared to 
the aforementioned methods. The Levenberg-Marquardt algorithm in
volves iterative calculations of Jacobians, naturally extending the 
training duration. However, LSTM stands out as the slowest model, 
owing to its substantially larger parameter set than other models. 
Furthermore, given the recursive nature of LSTM, the optimization 
challenge here is notably more intricate than in the case of MLP, 
necessitating training using the backpropagation through time algo
rithm. Nevertheless, leveraging parallel training with GPU significantly 
reduces the training time of LSTM to approximately 6 seconds, although 
it remains relatively time-consuming compared to other models. 

4.5. Comparative approaches 

In this section, we compare the best results achieved by our models 
with the results obtained using alternative approaches. These alternative 
approaches utilize ensembling, time series decomposition, and hybrid
ization of classical and deep learning methods. They include:  

• Ensemble – simple averaging of predictions generated by our 12 
forecasting models. 

• cES-adRNN – a contextually enhanced hybrid and hierarchical ar
chitecture combining exponential smoothing and recurrent neural 
network proposed in [77]. This state-of-the-art model represents an 
advanced approach to forecasting with a wide range of sophisticated 
techniques and features. It incorporates various mechanisms and 
procedures to improve forecasting accuracy, including two simulta
neously trained tracks, multiple stacked recurrent layers with hier
archical dilations, attentive dilated recurrent cells, dynamic 
exponential smoothing component, cross-learning, ensembling, and 
mechanisms to mitigate overfitting. Ta
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• RandNN+STD – an ensemble forecasting method proposed in [28], 
that combines randomized neural networks (RandNNs) and 
seasonal-trend-dispersion decomposition of time series (STD). The 
STD products are employed to encode the input and output time 
series data, simplifying the relationship between them and stream
lining the forecasting process. RandNNs are used as ensemble 
members for their capability to control diversity and very fast 
training. 

Tables 11 and 12 present the errors for daily and weekly volatility 
forecasting. As can be seen from these tables, it is evident that cES- 
adRNN achieved the lowest MSE for BTC, LTC, and XMR in daily fore
casts. However, it also resulted in the highest MAE for BTC, ETH, and 
XMR. Ensembling effectively improves the average error of the base 
models and approaches the performance of the best models in terms of 
MAE but not MSE. It is important to note that ensembling is a time- 
consuming approach as it involves optimizing and training all 12 base 
models. For weekly forecasts, similar to daily forecasts, the results are 
inconclusive and do not indicate a clear superior approach. In conclu
sion, this research suggests that neither ensembling, decomposition, nor 
hybridization yields a definitive improvement in the accuracy of daily 
and weekly forecasts of volatility. 

4.6. Attempts to explain the lack of significant advantage of ML methods 

In order to enhance our findings, we conduct supplementary analyses 
in an effort to identify the factors contributing to the near-equivalence of 
simpler and more complex methods in terms of efficiency. 

Initially, we explore the possibility that outliers within the dataset 
might be influencing our results. As elucidated in Section 3, the presence 
of substantial outliers persisted in the realized variances, even after a 
logarithmic transformation. It is well-documented that outliers can 
distort patterns in the data, thereby hampering the effectiveness of 
forecasting. To address this concern, we remove outliers from the time 
series of realized variances under investigation. In this study, outliers 
are defined as observations exceeding Q3 + 1.5IQR, where Q3 repre
sents the upper quartile, and IQR denotes the interquartile range. For the 
BTC/USD series, this outliers removal process lead to the exclusion of 
172 observations (approximately 9.4% of the data) from the period 
spanning January 1, 2017, to December 31, 2021. The results for daily 
volatility forecasts for BTC/USD can be found in Table A7 in the Ap
pendix. Although there are some changes in the rankings of the 
compared methods, overall, no substantial enhancement in the perfor
mance of ML methods over simpler methods is observed. Consequently, 
we are unable to confirm the hypothesis that the presence of outliers is 
the primary reason for the observed absence of superiority of complex 
methods over simpler ones. 

Next, we examine whether our findings could be attributed to the 
absence of nonlinear relationships within the processes under investi
gation. To address this, we employ the RESET test [71] to verify the null 
hypothesis of the appropriateness of the HAR model specification. Our 
study considers the entire investigation period from January 1, 2017, to 
December 31, 2021. The results obtained (see Table A8 in the Appendix) 
reveal no compelling evidence to suggest that the analyzed data are 
driven by nonlinear relationships. 

However, owing to the potential existence of various forms of 
nonlinearity and the limited power of various tests, an additional 
investigation is conducted, involving the application of four measures of 
dependence: Pearson, Spearman, and Kendall tau correlation co
efficients, as well as the mutual information measure. In our study, we 
not only calculate these measures but also conduct permutation tests to 
assess their significance. 

While Pearson’s correlation coefficient is the most widely used 
measure for quantifying relationships between two variables, it pri
marily assesses linear relationships. Spearman’s and Kendall’s co
efficients are applied for ordinal data and can capture varied, including Ta
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nonlinear, monotonic relationships. The mutual information measure 
(MI) is one of the most important tool for detecting nonlinear de
pendencies in time series [31,40,41]. Its conceptual link to Shannon 
entropy suggests that MI quantifies the extent to which knowledge of 
one variable enhances information about another. Specifically, it as
sesses the ability of one variable to predict the other. 

We employ these measures to explore relationships between lnRVd,t 
and the explanatory variables in our forecasting models, namely 
lnRVd,t− 1, lnRVw,t− 1, lnRVm,t− 1, as well as the relationships between the 
residuals from the HAR model and these three variables. Detecting de
pendencies in the residuals would imply the presence of neglected 
nonlinear relationships between lnRVd,t and the variables under exam
ination. 

The results of this analysis for BTC/USD are presented in the Ap
pendix. Scatter plots (Figure A1) and the data in Table A9 illustrate 
strong relationships between lnRVd,t and each of lnRVd,t− 1, lnRVw,t− 1,

lnRVm,t− 1. However, the results for the residuals from the HAR model are 
less definitive. Visual analysis of the scatter plots (Figure A2) do not 
confirm the presence of clear dependencies in the filtered data. This is 
also formally demonstrated in Table A10 for three out of four depen
dence measures applied, specifically the Pearson, Spearman, and Ken
dall correlation coefficients. These outcomes suggest that there is 
insufficient evidence to support the hypothesis of nonlinear relation
ships between lnRVd,t and the analyzed explanatory variables. 

Nevertheless, a different conclusion emerges with the MI measure. 
Its significance for the residuals from the HAR model indicates the 
presence of nonlinear relationships between lnRVd,t and each of the 
three explanatory variables. The divergent results may be attributed to 
the unique nature of the MI measure, as it has the potential to identify a 
different class of dependencies compared to the aforementioned co
efficients. 

In summary, it should be noted that most of the research methods 
employed indicate that the relationships between lnRVd,t and lnRVd,t− 1,

lnRVw,t− 1, lnRVm,t− 1 are linear. This observation may explain why the 
more complex ML methods do not outperform the simpler linear tech
niques. However, the presence of nonlinear relationships as indicated by 
the MI measure justifies further investigation into other methods that 
can leverage these relationships to enhance forecast accuracy. 

4.7. Discussion 

Cryptocurrencies volatility is very hard to predict due to lack of a 
distinctive pattern in time series, no strong seasonality, occurrence of 
chaotic trend and large random fluctuations [56]. A number of factors 
contribute to the fact that cryptocurrencies are highly volatile assets, 
and predicting their movements is extremely difficult. They include [10, 
12,18,22]:  

1. Lack of fundamental value. Unlike traditional assets, such as stocks 
or commodities, cryptocurrencies do not have a clear fundamental 
value that can be used to predict their price movements. Their value 
is largely based on market demand, which can be highly volatile and 
difficult to predict.  

2. Market sentiment and speculation. The cryptocurrency market is 
largely driven by market sentiment and speculation, which can be 
influenced by a variety of factors such as news events, social media, 
and rumours. These factors can be difficult to quantify and predict, 
making it challenging to forecast market movements. 

3. Lack of regulation. The lack of regulatory oversight in the crypto
currency market can make it more susceptible to price manipulation 
and insider trading, which can further increase volatility and make 
predictions more difficult.  

4. Immaturity and low market capitalization. The cryptocurrency 
market is dominated by small investors, making it inefficient. That is 
why a large order (from the so-called ‘whales’) may significantly 
impact prices and cause jumps. Consequently, cryptocurrencies are 
more susceptible to jumps when compared to more mature markets. 
Additionally, the relatively low market capitalization of many 
cryptocurrencies means that even small changes in demand can have 
a significant impact on price.  

5. Limited historical data. Cryptocurrencies are a relatively new asset 
class, with limited historical data available for analysis. This makes it 
difficult to identify patterns and trends that can be used to make 
accurate predictions. 

Our findings on exploring the effectiveness of various modelling 
techniques in forecasting the volatility of cryptocurrencies can be 
summarized as follows:  

1. It is not possible to identify the best model, because depending on the 
cryptocurrency and the accuracy measure used, various models were 
ranked at the top of the accuracy rankings. The following models 
were most often at the forefront: HAR-based models, AFRIMA, and 
SVR-based models for daily volatility forecasting, and RR, SVR-based 
models, and FNM for weekly volatility forecasting.  

2. ML models do not produce significantly more accurate predictions 
than classical statistical models based on the realized variance. 
Typically, ML models show their advantage over statistical models 
due to ability to nonlinear modelling, large-scale forecasting, feature 
engineering and robustness. These advantages prove useless in 
forecasting noisy cryptocurrency volatility. 

3. Optimizing the ML models is a challenging task, as the hyper
parameters that perform well on the validation sets do not neces
sarily generalize well to the test sets. This can be attributed to the 
nature of time series, which are noisy and lack clear patterns, sea
sonal cycles, and stable trends. Therefore, the insights gained from 
the validation sequence may not carry over to the test sequence, 
making hyperparameter tuning a difficult task.  

4. We try to improve the performance of the ML models by making 
various modifications. They include defining input data as separate 
30 lags of RVd,t , skipping log transformation of data, using principal 
component analysis to extract inputs, and defining separate models 
for each day of the week. Unfortunately, none of these modifications 
improve performance.  

5. Among the ML methods, the SVR models are outstanding. Both SVR- 
L and SVR-G models stay out in terms of predictive power for both 
daily and weekly forecasts. Our study does not show significant 
differences between linear and RBF kernels in SVR models.  

6. Despite being the only model among the group of ML models capable 
of modelling dependencies in sequential data, the LSTM model 
proves to be a big disappointment in our study. While LSTM can 
capture short- and long-range temporal dependencies in time series, 
it struggles to forecast cryptocurrencies data due to its highly un
predictable and chaotic nature. We observe that LSTM had difficulty 
processing time series data expressed as lnRVt, likely due to the 
presence of negative values. However, when we transform the data 
using ln(1+100RVt) to obtain positive values, the LSTM model’s 
performance improves. 

7. The comparative study utilizing ensembling, time series decompo
sition, and hybridization of classical and deep learning models do not 
yield significant improvements. Despite incorporating state-of-the- 
art time series processing mechanisms, these models do not pro
duce clearly superior results. The lack of clear advantage could be 
attributed to the chaotic nature of the time series, characterized by a 
lack of regularity and discernible patterns. 
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8. In our study, we utilize data spanning from midnight to midnight, 
which means that the daily realized variance in formula (2) is 
computed over 24 h, starting at 00:00 and concluding at 24:00. To 
assess the robustness of our findings, we also perform a check using 
data from noon to noon, ranging from 12:00 to 12:00 on the 
following day. The results, pertaining to daily volatility forecasts for 
BTC/USD, are presented in Table A11 within the Appendix. Our 
evaluation, based on the MSE measure, reveals that seven models are 
included in the model confidence set. This is two more models than 
the set generated using data from midnight to midnight. Similarly, 
for the MAE criterion, exactly the same models are retained within 
the model confidence set. In conclusion, our analysis indicates that 
the choice of the starting hour for the data does not significantly 
influence the results.  

9. The main findings are robust to the applied forecasting evaluation 
measures. The conclusions which result from the MSE and MAE 
criteria are confirmed by the R2, MAPE and QLIKE measures (see 
Tables A1-A6 in the Appendix). 

5. Conclusions 

Cryptocurrencies are highly volatile and their price movements are 
affected by a variety of factors, including market sentiment, regulatory 
changes, and technological advancements. Additionally, the absence of 
clear patterns in the price data and its strong random fluctuations make 
it extremely challenging to predict their volatility. 

In our study, we compare ML and statistical models for forecasting 
cryptocurrency volatility. We find that identifying the best forecasting 
model for this task is challenging, as the performance of different models 
varies depending on the specific cryptocurrency and the choice of error 
metric. For daily forecasts, linear SVR consistently appears in the set of 
best models based on MSE and MAE measures, while for weekly fore
casts, FNM and RR are the top performers. The GARCH model, 
commonly used for volatility modelling, proves to be inadequate for 
cryptocurrencies. Forecasts generated by the GARCH model using 
squared daily returns are poor compared to models based on realized 
variance calculated from intraday prices. 

Interestingly, ML models do not outperform classical statistical 
models. Despite ML models’ advantages in nonlinear modelling, 
robustness, and flexibility, these characteristics do not necessarily 
translate into improved accuracy for volatile cryptocurrency markets, 
characterized by chaotic behaviour, large swings, and outliers. Sur
prisingly, simple methods like HAR or RR are not significantly worse 
than more advanced techniques like LSTM or RF. Moreover, our findings 
show that attempts to enhance accuracy through ensembling, time series 
decomposition, and model hybridization do not yield significant 
improvements. 

Our findings can provide a useful reference for the development of 
more sophisticated models. Incorporating additional information, such 
as market sentiment indicators, blockchain data, economic indicators, 
technical analysis indicators, and price data from related markets into 

the input variables may also be an interesting avenue for further 
research. 
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Appendix A  

Table A1 
Evaluation of daily volatility forecasts based on the R2 measure.  

Method BTC/USD ETH/USD LTC/USD XMR/USD 

R2 Rank R2 Rank R2 Rank R2 Rank 

HAR  0.177  2  0.231  7  0.139  7  0.185  5 
HAR-R  0.176  3  0.233  6  0.143  5  0.186  3 
ARFIMA  0.166  6  0.238  3  0.151  4  0.185  4 

(continued on next page) 
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Table A1 (continued ) 

Method BTC/USD ETH/USD LTC/USD XMR/USD 

R2 Rank R2 Rank R2 Rank R2 Rank 

GARCH  0.046  12  0.235  5  0.083  12  0.189  2 
LASSO  0.163  7  0.205  8  0.159  1  0.183  7 
RR  0.168  4  0.237  4  0.155  2  0.184  6 
SVR-G  0.143  10  0.249  1  0.142  6  0.172  9 
SVR-L  0.167  5  0.242  2  0.155  3  0.197  1 
MLP  0.202  1  0.196  9  0.125  8  0.178  8 
FNM  0.153  8  0.132  12  0.092  10  0.095  12 
RF  0.111  11  0.160  11  0.122  9  0.125  11 
LSTM  0.143  9  0.165  10  0.088  11  0.150  10 

Note: The highest values of R2 are in bold. The evaluation period is January 1, 2019 - December 31, 2021.  
Table A2 
Evaluation of daily volatility forecasts based on the MAPE measure and the MCS test.  

Method BTC/USD ETH/USD LTC/USD XMR/USD 

MAPE Rank p-value MAPE Rank p-value MAPE Rank p-value MAPE Rank p-value 

HAR  59.683  2 0.000  54.394  4 0.000  56.522  5 0.000  54.108  11 0.000 
HAR-R  55.832  1 1.000 *  51.003  1 1.000 *  53.404  1 1.000 *  51.049  8 0.407 * 
ARFIMA  61.335  4 0.000  54.618  5 0.000  56.001  3 0.000  50.940  7 0.386 * 
GARCH  180.127  12 0.000  145.062  12 0.000  117.588  12 0.000  120.028  12 0.000 
LASSO  68.788  10 0.000  66.107  11 0.000  58.436  11 0.000  53.286  10 0.000 
RR  62.408  9 0.000  57.092  10 0.000  57.558  8 0.000  52.792  9 0.000 
SVR-G  61.523  6 0.000  54.636  6 0.000  57.203  7 0.000  50.398  4 0.407 * 
SVR-L  61.911  7 0.000  55.225  8 0.000  57.103  6 0.000  50.689  6 0.407 * 
MLP  59.704  3 0.001  54.314  3 0.000  56.051  4 0.000  49.732  2 0.407 * 
FNM  61.345  5 0.000  55.826  9 0.000  57.984  10 0.000  50.677  5 0.407 * 
RF  62.113  8 0.000  54.687  7 0.000  57.846  9 0.000  50.121  3 0.407 * 
LSTM  78.349  11 0.000  52.764  2 0.265 *  54.479  2 0.527 *  47.969  1 1.000 * 

Note: The lowest values of MAPE are in bold. The evaluation period is January 1, 2019 - December 31, 2021, * indicates that models belong to MCS with a confidence 
level of 0.90.  
Table A3 
Evaluation of daily volatility forecasts based on the QLIKE measure and the MCS test.  

Method BTC/USD ETH/USD LTC/USD XMR/USD 

QLIKE Rank p-value QLIKE Rank p-value QLIKE Rank p-value QLIKE Rank p-value 

HAR  -5.476  7 0.000  -5.133  6 0.000  -4.742  4 0.000  -4.983  4 0.015 
HAR-R  -5.429  10 0.000  -5.112  9 0.000  -4.718  11 0.000  -4.975  7 0.000 
ARFIMA  -5.514  3 0.069  -5.136  5 0.000  -4.742  5 0.000  -4.982  5 0.015 
GARCH  -5.466  8 0.000  -5.088  11 0.000  -4.722  10 0.000  -4.893  11 0.000 
LASSO  -5.514  4 0.693 *  -5.138  4 0.002  -4.759  1 1.000 *  -4.994  1 1.000 * 
RR  -5.525  2 0.802 *  -5.153  1 1.000 *  -4.757  2 0.639 *  -4.992  2 0.096 
SVR-G  -5.485  6 0.000  -5.141  3 0.000  -4.755  3 0.639 *  -4.976  6 0.000 
SVR-L  -5.528  1 1.000 *  -5.146  2 0.012  -4.738  6 0.266 *  -4.985  3 0.080 
MLP  -5.501  5 0.025  -5.129  7 0.000  -4.733  8 0.000  -4.974  8 0.000 
FNM  -5.465  9 0.000  -5.112  8 0.000  -4.733  7 0.000  -4.942  9 0.000 
RF  -5.428  11 0.000  -5.097  10 0.000  -4.731  9 0.000  -4.938  10 0.000 
LSTM  -5.312  12 0.000  -4.573  12 0.000  -4.019  12 0.000  -4.445  12 0.000 

Note: The lowest values of QLIKE are in bold. The evaluation period is January 1, 2019 - December 31, 2021, * indicates that models belong to MCS with a confidence 
level of 0.90.  
Table A4 
Evaluation of weekly volatility forecasts based on the R2 measure.  

Method BTC/USD ETH/USD LTC/USD XMR/USD 

R2 Rank R2 Rank R2 Rank R2 Rank 

HAR  0.102  9  0.131  9  0.116  10  0.106  11 
HAR-R  0.099  10  0.133  8  0.121  9  0.114  10 
ARFIMA  0.118  6  0.150  7  0.147  8  0.141  5 
GARCH  0.039  12  0.074  11  0.047  12  0.048  12 
LASSO  0.084  11  0.048  12  0.156  4  0.122  9 
RR  0.127  4  0.162  4  0.153  5  0.141  6 
SVR-G  0.115  7  0.179  3  0.148  7  0.140  7 
SVR-L  0.124  5  0.160  5  0.153  6  0.143  3 
MLP  0.172  1  0.153  6  0.159  3  0.141  4 
FNM  0.137  2  0.183  2  0.168  2  0.162  2 
RF  0.131  3  0.211  1  0.188  1  0.164  1 
LSTM  0.113  8  0.099  10  0.052  11  0.139  8 

Note: The highest values of R2 are in bold. The evaluation period is January 1, 2019 - December 31, 2021.  
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Table A5 
Evaluation of weekly volatility forecasts based on the MAPE measure and the MCS test.  

Method BTC/USD ETH/USD LTC/USD XMR/USD 

MAPE Rank p-value MAPE Rank p-value MAPE Rank p-value MAPE Rank p-value 

HAR  44.466  1 1.000 *  44.443  4 0.425 *  46.742  3 0.727 *  44.525  10 0.006 
HAR-R  44.613  2 0.942 *  42.958  1 1.000 *  45.471  1 1.000 *  40.337  5 0.234 * 
ARFIMA  44.922  3 0.942 *  43.513  2 0.698 *  46.38  2 0.727 *  37.717  1 1.000 * 
GARCH  128.704  12 0.000  110.854  12 0.000  84.863  12 0.000  95.038  12 0.000 
LASSO  57.470  10 0.002  62.805  11 0.000  48.927  10 0.638 *  41.514  8 0.032 
RR  46.022  5 0.779 *  46.315  8 0.103 *  47.407  6 0.727 *  40.933  7 0.032 
SVR-G  48.129  8 0.779 *  44.692  5 0.324 *  47.442  7 0.727 *  40.746  6 0.075 
SVR-L  46.957  7 0.779 *  44.883  6 0.324 *  47.707  8 0.686 *  41.626  9 0.032 
MLP  50.298  9 0.491 *  49.165  9 0.0207  47.737  9 0.711 *  39.559  3 0.347 * 
FNM  46.534  6 0.779 *  44.346  3 0.695 *  46.914  5 0.727 *  39.864  4 0.335 * 
RF  45.348  4 0.942 *  45.088  7 0.324 *  46.802  4 0.727 *  39.168  2 0.347 * 
LSTM  63.413  11 0.000  55.691  10 0.000  60.901  11 0.000  53.879  11 0.000 

Note: The lowest values of MAPE are in bold. The evaluation period is January 1, 2019 - December 31, 2021, * indicates that models belong to MCS with a confidence 
level of 0.90.   

Table A6 
Evaluation of weekly volatility forecasts based on the QLIKE measure and the MCS test.  

Method BTC/USD ETH/USD LTC/USD XMR/USD 

QLIKE Rank p-value QLIKE Rank p-value QLIKE Rank p-value QLIKE Rank p-value 

HAR  -2.866  10 0.000  -2.914  10 0.000  -2.492  10 0.000  -2.820  8 0.000 
HAR-R  -2.629  12 0.000  -2.827  11 0.000  -2.398  11 0.000  -2.800  11 0.000 
ARFIMA  -3.157  6 0.000  -2.963  6 0.000  -2.554  7 0.048  -2.853  3 0.010 
GARCH  -3.429  1 1.000 *  -3.029  1 1.000 *  -2.661  1 1.000 *  -2.830  5 0.009 
LASSO  -3.218  2 0.380 *  -2.952  8 0.000  -2.584  3 0.663 *  -2.876  2 0.529 * 
RR  -3.192  3 0.404 *  -3.010  2 0.883 *  -2.583  5 0.663 *  -2.883  1 1.000 * 
SVR-G  -2.928  9 0.000  -2.938  9 0.000  -2.543  8 0.000  -2.816  9 0.000 
SVR-L  -3.141  8 0.072  -2.973  5 0.000  -2.573  6 0.402 *  -2.84  4 0.000 
MLP  -3.171  5 0.404 *  -2.962  7 0.000  -2.522  9 0.000  -2.814  10 0.000 
FNM  -3.179  4 0.000  -2.997  4 0.701 *  -2.584  4 0.663 *  -2.824  7 0.000 
RF  -3.155  7 0.000  -3.008  3 0.883 *  -2.588  2 0.663 *  -2.827  6 0.000 
LSTM  -2.840  11 0.000  -2.137  12 0.000  -1.058  12 0.000  -2.046  12 0.000 

Note: The lowest values of QLIKE are in bold. The evaluation period is January 1, 2019 - December 31, 2021, * indicates that models belong to MCS with a confidence 
level of 0.90.   

Table A7 
Evaluation of daily volatility forecasts for BTC/USD based on the MSE and MAE measures and the MCS test for data without outliers.  

Method MSE MAE 

Value Rank p-value Value Rank p-value 

HAR  0.743  5 0.001  0.526  7 0.271 * 
HAR-R  0.746  7 0.000  0.524  4 0.463 * 
ARFIMA  0.729  2 0.187 *  0.523  3 0.505 * 
GARCH  0.977  10 0.000  0.717  12 0.000 
LASSO  1.010  11 0.000  0.652  10 0.000 
RR  0.721  1 1.000 *  0.521  1 1.000 * 
SVR-G  0.731  4 0.020  0.525  6 0.305 * 
SVR-L  0.731  3 0.039  0.522  2 0.505 * 
MLP  0.745  6 0.006  0.524  5 0.505 * 
FNM  0.757  9 0.000  0.533  9 0.084 
RF  0.753  8 0.000  0.530  8 0.159 * 
LSTM  1.138  12 0.000  0.657  11 0.000 

Note: The values of MSE are multiplied by 106, the values of MAE are multiplied by 103, the lowest values of MSE are in bold, p-value is for the MCS test, 
* indicates that models belong to MCS with a confidence level of 0.90. The evaluation period is January 1, 2019 - December 31, 2021.   

Table A8 
The results of the RESET test for correct specification of the HAR model for 
BTC/USD.  

Variant of the test F-statistic p-value 

Quadratic and cubic term  0.110  0.896 
Only quadratic term  0.187  0.665 
Only cubic term  0.175  0.676 

Note: The analysed period is January 1, 2019 - December 31, 2021.   
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.

Fig. A2. Scatter plots of the residuals from the HAR model and the explanatory variables lnRVd,t− 1, lnRVw,t− 1, lnRVm,t− 1 for BTC/USD (January 1, 2017 - December 
31, 2021). 
.   

Table A9 
The values of dependence measures between ln RVd,t and the explanatory varia
bles ln RVd,t− 1, ln RVw,t− 1, ln RVm,t− 1 for BTC/USD.  

Dependence measure Variable 

ln RVd,t− 1 ln RVw,t− 1 ln RVm,t− 1 

Pearson  0.736 
(0.000)  

0.710 
(0.000)  

0.616 
(0.000) 

Spearman  0.715 
(0.000)  

0.696 
(0.000)  

0.605 
(0.000) 

Kendall  0.539 
(0.000)  

0.518 
(0.000)  

0.436 
(0.000) 

Mutual Information  0.173 
(0.000)  

0.156 
(0.000)  

0.123 
(0.000) 

Note: Each cell contains the value of the measure and p-value in the permutation test for the significance 
(in brackets). P-values smaller than 0.05 are in bold. The analysed period is January 1, 2019 - December 
31, 2021.   

Table A10 
The values of dependence measures between the residuals from the HAR model and the explanatory 
variablesln RVd,t− 1, ln RVw,t− 1, ln RVm,t− 1 for BTC/USD.  

Dependence measure Variable 

ln RVd,t− 1 ln RVw,t− 1 ln RVm,t− 1 

Pearson  0.000 
(0.972)  

0.000 
(0.990)  

0.000 
(0.998) 

Spearman  0.015 
(0.519)  

0.026 
(0.270)  

0.028 
(0.237) 

Kendall  0.010 
(0.527)  

0.017 
(0.281)  

0.019 
(0.234) 

Mutual Information  0.014 
(0.048)  

0.017 
(0.012)  

0.021 
(0.000) 

Note: Each cell contains the value of the measure and p-value in the permutation test for the significance 
(in brackets). P-values smaller than 0.05 are in bold. The analysed period is January 1, 2019 - December 
31, 2021.   

Fig. A1. Scatter plots of lnRVd,t and the explanatory variables lnRVd,t− 1, lnRVw,t− 1, lnRVm,t− 1 for BTC/USD (January 1, 2017 - December 31, 2021).   
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Table A11 
Evaluation of daily volatility forecasts for BTC/USD based on the MSE and MAE measures and the MCS test for data observed from noon to noon.  

Method MSE MAE 

Value Rank p-value Value Rank p-value 

HAR  0.180  2 0.412 *  0.103  2 0.953 * 
HAR-R  0.181  3 0.181 *  0.103  1 1.000 * 
ARFIMA  0.183  6 0.120 *  0.104  4 0.746 * 
GARCH  0.189  10 0.041  0.123  12 0.000 
LASSO  0.187  8 0.010  0.107  9 0.029 
RR  0.181  5 0.412 *  0.104  3 0.762 * 
SVR-G  0.181  4 0.412 *  0.104  5 0.710 * 
SVR-L  0.184  7 0.120 *  0.105  8 0.536 * 
MLP  0.172  1 1.000 *  0.105  6 0.683 * 
FNM  0.188  9 0.041  0.105  7 0.165 * 
RF  0.193  12 0.041  0.108  10 0.029 
LSTM  0.192  11 0.001  0.111  11 0.001 

Note: The values of MSE are multiplied by 104, the values of MAE are multiplied by 102, the lowest values of MSE are in bold, p-value is for the MCS test, 
* indicates that models belong to MCS with a confidence level of 0.90. The evaluation period is January 1, 2019 - December 31, 2021. 
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